Mostrar el registro sencillo del ítem

dc.contributor.authorHernández Callejo, Luis 
dc.contributor.authorBaladrón García, Carlos 
dc.contributor.authorAguiar Pérez, Javier Manuel 
dc.contributor.authorCalavia, Lorena
dc.contributor.authorCarro Martínez, Belén 
dc.contributor.authorSánchez Esguevillas, Antonio Javier
dc.contributor.authorGarcía, Pablo
dc.contributor.authorLloret, Jaime
dc.date.accessioned2022-12-02T12:10:00Z
dc.date.available2022-12-02T12:10:00Z
dc.date.issued2013
dc.identifier.citationEnergies, 2013, vol. 6, n. 6, p. 2927-2948es
dc.identifier.issn1996-1073es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/57642
dc.descriptionProducción Científicaes
dc.description.abstractThanks to the built in intelligence (deployment of new intelligent devices and sensors in places where historically they were not present), the Smart Grid and Microgrid paradigms are able to take advantage from aggregated load forecasting, which opens the door for the implementation of new algorithms to seize this information for optimization and advanced planning. Therefore, accuracy in load forecasts will potentially have a big impact on key operation factors for the future Smart Grid/Microgrid-based energy network like user satisfaction and resource saving, and new methods to achieve an efficient prediction in future energy landscapes (very different from the centralized, big area networks studied so far). This paper proposes different improved models to forecast next day’s aggregated load using artificial neural networks, taking into account the variables that are most relevant. In particular, seven models based on the multilayer perceptron will be proposed, progressively adding input variables after analyzing the influence of climate factors on aggregated load. The results section presents the forecast from the proposed models, obtained from real data.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/*
dc.subject.classificationArtificial Neural Networks (ANN)es
dc.subject.classificationAggregated loades
dc.subject.classificationSmart grides
dc.subject.classificationMicrogridses
dc.subject.classificationMultilayer perceptrones
dc.titleExperimental analysis of the input variables’ relevance to forecast next day’s aggregated electric demand using neural networkses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2013 The Author(s)es
dc.identifier.doi10.3390/en6062927es
dc.relation.publisherversionhttps://www.mdpi.com/1996-1073/6/6/2927es
dc.identifier.publicationfirstpage2927es
dc.identifier.publicationissue6es
dc.identifier.publicationlastpage2948es
dc.identifier.publicationtitleEnergieses
dc.identifier.publicationvolume6es
dc.peerreviewedSIes
dc.identifier.essn1996-1073es
dc.rightsAttribution 3.0 Unported*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco33 Ciencias Tecnológicases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem