• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/57650

    Título
    An SVM-based classifier for estimating the state of various rotating components in agro-industrial machinery with a vibration signal acquired from a single point on the machine chassis
    Autor
    Ruiz González, RubénAutoridad UVA
    Gómez Gil, JaimeAutoridad UVA Orcid
    Gómez Gil, Francisco Javier
    Martínez Martínez, Víctor
    Año del Documento
    2014
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Sensors, 2014, vol. 14, n. 11, p. 20713-20735
    Abstract
    The goal of this article is to assess the feasibility of estimating the state of various rotating components in agro-industrial machinery by employing just one vibration signal acquired from a single point on the machine chassis. To do so, a Support Vector Machine (SVM)-based system is employed. Experimental tests evaluated this system by acquiring vibration data from a single point of an agricultural harvester, while varying several of its working conditions. The whole process included two major steps. Initially, the vibration data were preprocessed through twelve feature extraction algorithms, after which the Exhaustive Search method selected the most suitable features. Secondly, the SVM-based system accuracy was evaluated by using Leave-One-Out cross-validation, with the selected features as the input data. The results of this study provide evidence that (i) accurate estimation of the status of various rotating components in agro-industrial machinery is possible by processing the vibration signal acquired from a single point on the machine structure; (ii) the vibration signal can be acquired with a uniaxial accelerometer, the orientation of which does not significantly affect the classification accuracy; and, (iii) when using an SVM classifier, an 85% mean cross-validation accuracy can be reached, which only requires a maximum of seven features as its input, and no significant improvements are noted between the use of either nonlinear or linear kernels.
    Materias Unesco
    33 Ciencias Tecnológicas
    Palabras Clave
    Support Vector Machine (SVM)
    Predictive Maintenance (PdM)
    Agricultural machinery
    Vibration analysis
    ISSN
    1424-8220
    Revisión por pares
    SI
    DOI
    10.3390/s141120713
    Version del Editor
    https://www.mdpi.com/1424-8220/14/11/20713
    Propietario de los Derechos
    © 2014 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/57650
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    SVM-based-classifier-estimating.pdf
    Tamaño:
    1.074Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Attribution 3.0 UnportedLa licencia del ítem se describe como Attribution 3.0 Unported

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10