• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/57820

    Título
    A kalman filter implementation for precision improvement in low-cost GPS positioning of tractors
    Autor
    Gómez Gil, JaimeAutoridad UVA Orcid
    Ruiz González, RubénAutoridad UVA
    Alonso García, Sergio
    Gómez Gil, Francisco Javier
    Año del Documento
    2013
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Sensors, 2013, vol. 13, n. 11, p. 15307-15323
    Resumen
    Low-cost GPS receivers provide geodetic positioning information using the NMEA protocol, usually with eight digits for latitude and nine digits for longitude. When these geodetic coordinates are converted into Cartesian coordinates, the positions fit in a quantization grid of some decimeters in size, the dimensions of which vary depending on the point of the terrestrial surface. The aim of this study is to reduce the quantization errors of some low-cost GPS receivers by using a Kalman filter. Kinematic tractor model equations were employed to particularize the filter, which was tuned by applying Monte Carlo techniques to eighteen straight trajectories, to select the covariance matrices that produced the lowest Root Mean Square Error in these trajectories. Filter performance was tested by using straight tractor paths, which were either simulated or real trajectories acquired by a GPS receiver. The results show that the filter can reduce the quantization error in distance by around 43%. Moreover, it reduces the standard deviation of the heading by 75%. Data suggest that the proposed filter can satisfactorily preprocess the low-cost GPS receiver data when used in an assistance guidance GPS system for tractors. It could also be useful to smooth tractor GPS trajectories that are sharpened when the tractor moves over rough terrain.
    Materias Unesco
    33 Ciencias Tecnológicas
    Palabras Clave
    Kalman filter
    Agricultural vehicles
    Global Positioning System (GPS)
    Vehicle guidance
    Sensor data fusion
    ISSN
    1424-8220
    Revisión por pares
    SI
    DOI
    10.3390/s131115307
    Version del Editor
    https://www.mdpi.com/1424-8220/13/11/15307
    Propietario de los Derechos
    © 2013 The Author(s)
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/57820
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Kalman-filter-implementation.pdf
    Tamaño:
    499.8Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution 3.0 UnportedLa licencia del ítem se describe como Attribution 3.0 Unported

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10