• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • FINAL DEGREE PROJECTS
    • Trabajos Fin de Grado UVa
    • View Item
    •   UVaDOC Home
    • FINAL DEGREE PROJECTS
    • Trabajos Fin de Grado UVa
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/58225

    Título
    Redes neuronales convolucionales
    Autor
    Martín de Diego, Elena
    Director o Tutor
    Barrio Tellado, Eustasio delAutoridad UVA
    Editor
    Universidad de Valladolid. Facultad de CienciasAutoridad UVA
    Año del Documento
    2022
    Titulación
    Grado en Matemáticas
    Abstract
    Artificial neural networks are a class of machine learning algorithms involved in many of the most spectacular applications in Artificial Intelligence. Deep neural networks or multilayer networks produce the best empirical results in the classification of images or texts. From a theoretical point of view, understanding the reasons for the success of these algorithms is still a pending issue. In addition to the convergence problems of the learning algorithms, the enormous overparameterization of many types of neural networks makes, perhaps, very likely that the classification rules obtained following this method suffer from overfitting. The goal of this project is to study the design of neural networks adapted to image analysis, without abundant parametrization, but oriented to take advantage of the special structure of this type of data. The gain of this approach in terms of control of the overfit will be studied and applied to the classification of some appropriate image dataset.
    Palabras Clave
    Aprendizaje automático
    Aprendizaje profundo
    Redes neuronales artificiales
    Departamento
    Departamento de Estadística e Investigación Operativa
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/58225
    Derechos
    openAccess
    Collections
    • Trabajos Fin de Grado UVa [30857]
    Show full item record
    Files in this item
    Nombre:
    TFG-G5993.pdf
    Tamaño:
    4.584Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcept where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10