Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/58612
Título
Non-autonomous scalar linear-dissipative and purely dissipative parabolic PDEs over a compact base flow
Año del Documento
2021
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Journal of Differential Equations, 2021, vol. 285, p. 714–750
Abstract
In this paper a family of non-autonomous scalar parabolic PDEs over a general compact and connected flow is considered. The existence or not of a neighbourhood of zero where the problems are linear has an influence on the methods used and on the dynamics of the induced skew-product semiflow. That is why two cases are distinguished: linear-dissipative and purely dissipative problems. In both cases, the structure of the global and pullback attractors is studied using principal spectral theory. Besides, in the purely dissipative setting, a simple condition is given, involving both the underlying linear dynamics and some properties of the nonlinear term, to determine the nontrivial sections of the attractor
Palabras Clave
Non-autonomous dynamical systems
Global and cocycle attractors
Linear-dissipative PDEs
Purely dissipative PDEs
Li-Yorke chaos
ISSN
0022-0396
Revisión por pares
SI
Patrocinador
FEDER Ministerio de Economía y Competitividad MTM2015-66330-P y RTI2018-096523-B-I00
Universidad de Valladolid PIP-TCESC-2020
Universidad de Valladolid PIP-TCESC-2020
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Collections
Files in this item