Mostrar el registro sencillo del ítem

dc.contributor.authorMerizalde Zamora, Yury Humberto
dc.contributor.authorHernández Callejo, Luis 
dc.contributor.authorDuque Pérez, Óscar 
dc.contributor.authorLópez Meraz, Raúl Alberto
dc.date.accessioned2023-02-23T12:14:22Z
dc.date.available2023-02-23T12:14:22Z
dc.date.issued2020
dc.identifier.citationAppl. Sci. 2020, vol.10, n. 21, 7389es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/58735
dc.descriptionProducción Científicaes
dc.description.abstractIn the wind industry (WI), a robust and effective maintenance system is essential. To minimize the maintenance cost, a large number of methodologies and mathematical models for predictive maintenance have been developed. Fault detection and diagnosis are carried out by processing and analyzing various types of signals, with the vibration signal predominating. In addition, most of the published proposals for wind turbine (WT) fault detection and diagnosis have used simulations and test benches. Based on previous work, this research report focuses on fault diagnosis, in this case using the electrical signal from an operating WT electric generator and applying various signal analysis and processing techniques to compare the effectiveness of each. The WT used for this research is 20 years old and works with a squirrel-cage induction generator (SCIG) which, according to the wind farm control systems, was fault-free. As a result, it has been possible to verify the feasibility of using the current signal to detect and diagnose faults through spectral analysis (SA) using a fast Fourier transform (FFT), periodogram, spectrogram, and scalogram.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectIngenieríaes
dc.subjectTecnologíaes
dc.subject.classificationWind turbinees
dc.subject.classificationElectric generatores
dc.subject.classificationFault diagnosises
dc.subject.classificationTurbina eólicaes
dc.subject.classificationGenerador eléctricoes
dc.subject.classificationDiagnóstico erróneoes
dc.titleFault detection of wind turbine induction generators through current signals and various signal processing techniqueses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 The Authorses
dc.identifier.doi10.3390/app10217389es
dc.relation.publisherversionhttps://www.mdpi.com/2076-3417/10/21/7389es
dc.identifier.publicationfirstpage7389es
dc.identifier.publicationissue21es
dc.identifier.publicationtitleApplied Scienceses
dc.identifier.publicationvolume10es
dc.peerreviewedSIes
dc.identifier.essn2076-3417es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3306 Ingeniería y Tecnología Eléctricases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem