Mostrar el registro sencillo del ítem

dc.contributor.authorBazán, Gustavo Henrique
dc.contributor.authorGoedtel, Alessandro
dc.contributor.authorCastoldi, Marcelo Favoretto
dc.contributor.authorGodoy, Wagner Fontes
dc.contributor.authorDuque Pérez, Óscar 
dc.contributor.authorMoríñigo Sotelo, Daniel 
dc.date.accessioned2023-03-10T08:33:59Z
dc.date.available2023-03-10T08:33:59Z
dc.date.issued2020
dc.identifier.citationApplied Sciences, 2021, Vol. 11, Nº. 1, 314es
dc.identifier.issn2076-3417es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/58908
dc.descriptionProducción Científicaes
dc.description.abstractThree-phase induction motors are extensively used in industrial processes due to their robustness, adaptability to different operating conditions, and low operation and maintenance costs. Induction motor fault diagnosis has received special attention from industry since it can reduce process losses and ensure the reliable operation of industrial systems. Therefore, this paper presents a study on the use of meta-heuristic tools in the diagnosis of bearing failures in induction motors. The extraction of the fault characteristics is performed based on mutual information measurements between the stator current signals in the time domain. Then, the Artificial Bee Colony algorithm is used to select the relevant mutual information values and optimize the pattern classifier input data. To evaluate the classification accuracy under various levels of failure severity, the performance of two different pattern classifiers was compared: The C4.5 decision tree and the multi-layer artificial perceptron neural networks. The experimental results confirm the effectiveness of the proposed approach.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectElectric motorses
dc.subjectPattern recognitiones
dc.subject.classificationBearing failure diagnosises
dc.subject.classificationArtificial bee colonyes
dc.titleMutual information and meta-heuristic classifiers applied to bearing fault diagnosis in three-phase induction motorses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 The Authorses
dc.identifier.doi10.3390/app11010314es
dc.relation.publisherversionhttps://www.mdpi.com/2076-3417/11/1/314es
dc.identifier.publicationfirstpage314es
dc.identifier.publicationissue1es
dc.identifier.publicationtitleApplied Scienceses
dc.identifier.publicationvolume11es
dc.peerreviewedSIes
dc.description.projectConsejo Nacional de Desarrollo Científico y Tecnológico - (processes 474290/2008-5, 473576/2011-2, 552269/2011-5, 201902/2015-0 and 405228/2016-3)
dc.identifier.essn2076-3417es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3306 Ingeniería y Tecnología Eléctricases
dc.subject.unesco3306.03 Motores Eléctricoses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem