Mostrar el registro sencillo del ítem
dc.contributor.author | Bazán, Gustavo Henrique | |
dc.contributor.author | Goedtel, Alessandro | |
dc.contributor.author | Castoldi, Marcelo Favoretto | |
dc.contributor.author | Godoy, Wagner Fontes | |
dc.contributor.author | Duque Pérez, Óscar | |
dc.contributor.author | Moríñigo Sotelo, Daniel | |
dc.date.accessioned | 2023-03-10T08:33:59Z | |
dc.date.available | 2023-03-10T08:33:59Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Applied Sciences, 2021, Vol. 11, Nº. 1, 314 | es |
dc.identifier.issn | 2076-3417 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/58908 | |
dc.description | Producción Científica | es |
dc.description.abstract | Three-phase induction motors are extensively used in industrial processes due to their robustness, adaptability to different operating conditions, and low operation and maintenance costs. Induction motor fault diagnosis has received special attention from industry since it can reduce process losses and ensure the reliable operation of industrial systems. Therefore, this paper presents a study on the use of meta-heuristic tools in the diagnosis of bearing failures in induction motors. The extraction of the fault characteristics is performed based on mutual information measurements between the stator current signals in the time domain. Then, the Artificial Bee Colony algorithm is used to select the relevant mutual information values and optimize the pattern classifier input data. To evaluate the classification accuracy under various levels of failure severity, the performance of two different pattern classifiers was compared: The C4.5 decision tree and the multi-layer artificial perceptron neural networks. The experimental results confirm the effectiveness of the proposed approach. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Electric motors | es |
dc.subject | Pattern recognition | es |
dc.subject.classification | Bearing failure diagnosis | es |
dc.subject.classification | Artificial bee colony | es |
dc.title | Mutual information and meta-heuristic classifiers applied to bearing fault diagnosis in three-phase induction motors | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2020 The Authors | es |
dc.identifier.doi | 10.3390/app11010314 | es |
dc.relation.publisherversion | https://www.mdpi.com/2076-3417/11/1/314 | es |
dc.identifier.publicationfirstpage | 314 | es |
dc.identifier.publicationissue | 1 | es |
dc.identifier.publicationtitle | Applied Sciences | es |
dc.identifier.publicationvolume | 11 | es |
dc.peerreviewed | SI | es |
dc.description.project | Consejo Nacional de Desarrollo Científico y Tecnológico - (processes 474290/2008-5, 473576/2011-2, 552269/2011-5, 201902/2015-0 and 405228/2016-3) | |
dc.identifier.essn | 2076-3417 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 3306 Ingeniería y Tecnología Eléctricas | es |
dc.subject.unesco | 3306.03 Motores Eléctricos | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional