Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Calva, Tomás Alberto
dc.contributor.authorMoríñigo Sotelo, Daniel 
dc.contributor.authorDuque Pérez, Óscar 
dc.contributor.authorGarcia Perez, Arturo
dc.contributor.authorRomero Troncoso, René de Jesús
dc.date.accessioned2023-03-15T08:42:09Z
dc.date.available2023-03-15T08:42:09Z
dc.date.issued2020
dc.identifier.citationEnergies, 2020, Vol. 13, Nº. 16, 4102es
dc.identifier.issn1996-1073es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/58935
dc.descriptionProducción Científicaes
dc.description.abstractIn this work, a new time-frequency tool based on minimum-norm spectral estimation is introduced for multiple fault detection in induction motors. Several diagnostic techniques are available to identify certain faults in induction machines; however, they generally give acceptable results only for machines operating under stationary conditions. Induction motors rarely operate under stationary conditions as they are constantly affected by load oscillations, speed waves, unbalanced voltages, and other external conditions. To overcome this issue, different time-frequency analysis techniques have been proposed for fault detection in induction motors under non-stationary regimes. However, most of them have low-resolution, low-accuracy or both. The proposed method employs the minimum-norm spectral estimation to provide high frequency resolution and accuracy in the time-frequency domain. This technique exploits the advantages of non-stationary conditions, where mechanical and electrical stresses in the machine are higher than in stationary conditions, improving the detectability of fault components. Numerical simulation and experimental results are provided to validate the effectiveness of the method in starting current analysis of induction motors.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectControl engineeringes
dc.subjectElectric motors, Inductiones
dc.subjectMotores eléctricoses
dc.subjectMotores de inducciones
dc.subjectSignal processinges
dc.subjectSpeech processing systemses
dc.subjectSpectrum analysis - Statistical methodses
dc.subjectTime-series analysises
dc.subjectFrequency spectraes
dc.subject.classificationFault detectiones
dc.titleTime-frequency analysis based on minimum-norm spectral estimation to detect induction motor faultses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 The Authorses
dc.identifier.doi10.3390/en13164102es
dc.relation.publisherversionhttps://www.mdpi.com/1996-1073/13/16/4102es
dc.identifier.publicationfirstpage4102es
dc.identifier.publicationissue16es
dc.identifier.publicationtitleEnergieses
dc.identifier.publicationvolume13es
dc.peerreviewedSIes
dc.description.projectConsejo Nacional de Ciencia y Tecnología (Proyecto 487058)es
dc.description.projectUniversidad de Guanajuato (Proyecto 248495/2019)es
dc.identifier.essn1996-1073es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3306 Ingeniería y Tecnología Eléctricases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem