Mostrar el registro sencillo del ítem
dc.contributor.author | García Calva, Tomás Alberto | |
dc.contributor.author | Moríñigo Sotelo, Daniel | |
dc.contributor.author | Duque Pérez, Óscar | |
dc.contributor.author | Garcia Perez, Arturo | |
dc.contributor.author | Romero Troncoso, René de Jesús | |
dc.date.accessioned | 2023-03-15T08:42:09Z | |
dc.date.available | 2023-03-15T08:42:09Z | |
dc.date.issued | 2020 | |
dc.identifier.citation | Energies, 2020, Vol. 13, Nº. 16, 4102 | es |
dc.identifier.issn | 1996-1073 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/58935 | |
dc.description | Producción Científica | es |
dc.description.abstract | In this work, a new time-frequency tool based on minimum-norm spectral estimation is introduced for multiple fault detection in induction motors. Several diagnostic techniques are available to identify certain faults in induction machines; however, they generally give acceptable results only for machines operating under stationary conditions. Induction motors rarely operate under stationary conditions as they are constantly affected by load oscillations, speed waves, unbalanced voltages, and other external conditions. To overcome this issue, different time-frequency analysis techniques have been proposed for fault detection in induction motors under non-stationary regimes. However, most of them have low-resolution, low-accuracy or both. The proposed method employs the minimum-norm spectral estimation to provide high frequency resolution and accuracy in the time-frequency domain. This technique exploits the advantages of non-stationary conditions, where mechanical and electrical stresses in the machine are higher than in stationary conditions, improving the detectability of fault components. Numerical simulation and experimental results are provided to validate the effectiveness of the method in starting current analysis of induction motors. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Control engineering | es |
dc.subject | Electric motors, Induction | es |
dc.subject | Motores eléctricos | es |
dc.subject | Motores de induccion | es |
dc.subject | Signal processing | es |
dc.subject | Speech processing systems | es |
dc.subject | Spectrum analysis - Statistical methods | es |
dc.subject | Time-series analysis | es |
dc.subject | Frequency spectra | es |
dc.subject.classification | Fault detection | es |
dc.title | Time-frequency analysis based on minimum-norm spectral estimation to detect induction motor faults | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2020 The Authors | es |
dc.identifier.doi | 10.3390/en13164102 | es |
dc.relation.publisherversion | https://www.mdpi.com/1996-1073/13/16/4102 | es |
dc.identifier.publicationfirstpage | 4102 | es |
dc.identifier.publicationissue | 16 | es |
dc.identifier.publicationtitle | Energies | es |
dc.identifier.publicationvolume | 13 | es |
dc.peerreviewed | SI | es |
dc.description.project | Consejo Nacional de Ciencia y Tecnología (Proyecto 487058) | es |
dc.description.project | Universidad de Guanajuato (Proyecto 248495/2019) | es |
dc.identifier.essn | 1996-1073 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 3306 Ingeniería y Tecnología Eléctricas | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional