Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/58935
Título
Time-frequency analysis based on minimum-norm spectral estimation to detect induction motor faults
Autor
Año del Documento
2020
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Energies, 2020, Vol. 13, Nº. 16, 4102
Resumen
In this work, a new time-frequency tool based on minimum-norm spectral estimation is introduced for multiple fault detection in induction motors. Several diagnostic techniques are available to identify certain faults in induction machines; however, they generally give acceptable results only for machines operating under stationary conditions. Induction motors rarely operate under stationary conditions as they are constantly affected by load oscillations, speed waves, unbalanced voltages, and other external conditions. To overcome this issue, different time-frequency analysis techniques have been proposed for fault detection in induction motors under non-stationary regimes. However, most of them have low-resolution, low-accuracy or both. The proposed method employs the minimum-norm spectral estimation to provide high frequency resolution and accuracy in the time-frequency domain. This technique exploits the advantages of non-stationary conditions, where mechanical and electrical stresses in the machine are higher than in stationary conditions, improving the detectability of fault components. Numerical simulation and experimental results are provided to validate the effectiveness of the method in starting current analysis of induction motors.
Materias (normalizadas)
Control engineering
Electric motors, Induction
Motores eléctricos
Motores de induccion
Signal processing
Speech processing systems
Spectrum analysis - Statistical methods
Time-series analysis
Frequency spectra
Materias Unesco
3306 Ingeniería y Tecnología Eléctricas
Palabras Clave
Fault detection
ISSN
1996-1073
Revisión por pares
SI
Patrocinador
Consejo Nacional de Ciencia y Tecnología (Proyecto 487058)
Universidad de Guanajuato (Proyecto 248495/2019)
Universidad de Guanajuato (Proyecto 248495/2019)
Version del Editor
Propietario de los Derechos
© 2020 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional