Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59034
Título
The exponential ordering for nonautonomous delay systems with applications to compartmental Nicholson systems
Año del Documento
2023
Editorial
Cambridge University Press
Descripción
Producción Científica
Documento Fuente
Proceedings of the Royal Society of Edinburgh Section A: Mathematics , First View , pp. 1 - 32 DOI: https://doi.org/10.1017/prm.2023.24
Abstract
The exponential ordering is exploited in the context of nonautonomous delay
systems, inducing monotone skew-product semiflows under less restrictive conditions
than usual. Some dynamical concepts linked to the order, such as semiequilibria, are
considered for the exponential ordering, with implications for the determination of
the presence of uniform persistence or the existence of global attractors. Also, some
important conclusions on the long-term dynamics and attraction are obtained for
monotone and sublinear delay systems for this ordering. The results are then applied
to almost periodic Nicholson systems and new conditions are given for the existence
of a unique almost periodic positive solution which asymptotically attracts every
other positive solution.
Palabras Clave
Nonautonomous dynamical systems
Dynamical
Systems
ISSN
0308-2105
Revisión por pares
SI
Patrocinador
The first three authors were partly supported by MICIIN/FEDER project RTI2018- 096523-B-I00 and by Universidad de Valladolid under project PIP-TCESC-2020. The fourth author was partly supported by MICINN/FEDER under projects RTI2018-096523-B-I00 and PGC2018-097565-B-I00
Idioma
eng
Tipo de versión
info:eu-repo/semantics/submittedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item