Mostrar el registro sencillo del ítem

dc.contributor.authorFontes Godoy, Wagner
dc.contributor.authorMoríñigo Sotelo, Daniel 
dc.contributor.authorDuque Pérez, Óscar 
dc.contributor.authorNunes da Silva, Ivan
dc.contributor.authorGoedtel, Alessandro
dc.contributor.authorPalácios, Rodrigo Henrique Cunha
dc.date.accessioned2023-03-29T08:38:59Z
dc.date.available2023-03-29T08:38:59Z
dc.date.issued2020
dc.identifier.citationEnergies 2020, vol. 13, n. 13, 3481es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/59046
dc.descriptionProducción Científicaes
dc.description.abstractThis paper addresses a comprehensive evaluation of a bearing fault evolution and its consequent prediction concerning the remaining useful life. The proper prediction of bearing faults in their early stage is a crucial factor for predictive maintenance and mainly for the production management schedule. The detection and estimation of the progressive evolution of a bearing fault are performed by monitoring the amplitude of the current signals at the time domain. Data gathered from line-fed and inverter-fed three-phase induction motors were used to validate the proposed approach. To assess classification accuracy and fault estimation, the models described in this paper are investigated by using Artificial Neural Networks models. The paper also provides process flowcharts and classification tables to present the prognostic models used to estimate the remaining useful life of a defective bearing. Experimental results confirmed the method robustness and provide an accurate diagnosis regardless of the bearing fault stage, motor speed, load level, and type of supply.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectIngeniería eléctricaes
dc.subject.classificationDiagnosises
dc.subject.classificationBearing faultses
dc.subject.classificationIntelligent estimationes
dc.subject.classificationThree-phase induction motores
dc.subject.classificationDiagnósticoes
dc.subject.classificationFallas en rodamientoses
dc.subject.classificationEstimación inteligentees
dc.titleEstimation of bearing fault severity in line-connected and inverter-fed three-phase induction motorses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 The Authorses
dc.identifier.doi10.3390/en13133481es
dc.relation.publisherversionhttps://www.mdpi.com/1996-1073/13/13/3481es
dc.identifier.publicationfirstpage3481es
dc.identifier.publicationissue13es
dc.identifier.publicationtitleEnergieses
dc.identifier.publicationvolume13es
dc.peerreviewedSIes
dc.description.projectCAPES (process BEX552269/2011-5)es
dc.description.projectNational Council for Scientific and Technological Development (grant #474290/2008-3, #473576/2011-2, #552269/2011-5, #307220/2016-8)es
dc.identifier.essn1996-1073es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3313 Tecnología E Ingeniería Mecánicases
dc.subject.unesco3306 Ingeniería y Tecnología Eléctricases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem