Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Álvarez, Diego
dc.contributor.authorBregón Bregón, Aníbal 
dc.contributor.authorPulido Junquera, José Belarmino 
dc.contributor.authorAlonso González, Carlos Javier 
dc.date.accessioned2023-04-10T11:27:41Z
dc.date.available2023-04-10T11:27:41Z
dc.date.issued2023
dc.identifier.citationEngineering Applications of Artificial Intelligence, 2023, vol. 122, 106145es
dc.identifier.issn0952-1976es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/59068
dc.descriptionProducción Científicaes
dc.description.abstractFast and efficient fault monitoring and diagnostics methods are essential for fault diagnosis and prognosis tasks in Health Monitoring Systems. These tasks are even more complicated when facing dynamic systems with multiple operation points. This article introduces a symbiotic solution for fault detection and isolation, based on the integration of two complementary techniques: Possible Conflicts (PCs), a model-based diagnosis technique from the Artificial Intelligence (AI) community, and Principal Component Analysis (PCA), a Multivariate Statistical Process Control (MSPC) technique. Our proposal improves the PCA-based fault detection in systems with multiple operation points and transient states and provides a straightforward fault isolation stage for PCA. At the same time, the proposal increases the robustness for fault detection using PCs through the application of PCA to the residual signals. PCA has the ability to filter out residual deviations caused by model uncertainties that can lead to a high number of false positives. The proposed method has been successfully tested in a real-world plant with accurate fault detection results. The plant has noisy sensors and a system model without the same accuracy at each operation point and transient states.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectinteligencia artificiales
dc.subjectInformáticaes
dc.subject.classificationMultivariate Statistical Process Controles
dc.subject.classificationFault diagnosises
dc.subject.classificationMultiple Operation Points Systemses
dc.subject.classificationPrincipal Component Analysises
dc.subject.classificationControl Estadístico de Procesos Multivariantees
dc.subject.classificationDiagnóstico erroneoes
dc.subject.classificationSistemas de Puntos de Operación Múltiplees
dc.subject.classificationAnálisis de componentes principaleses
dc.titleIntegrating PCA and structural model decomposition to improve fault monitoring and diagnosis with varying operation pointses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The Authorses
dc.identifier.doi10.1016/j.engappai.2023.106145es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S0952197623003299es
dc.identifier.publicationfirstpage106145es
dc.identifier.publicationtitleEngineering Applications of Artificial Intelligencees
dc.identifier.publicationvolume122es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación (PID2021-126659OB-I00)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203.17 Informáticaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem