Mostrar el registro sencillo del ítem

dc.contributor.authorSalvador González, Pablo 
dc.contributor.authorGómez, Diego
dc.contributor.authorSanz Justo, María Julia 
dc.contributor.authorCasanova Roque, José Luis 
dc.date.accessioned2023-04-11T08:50:25Z
dc.date.available2023-04-11T08:50:25Z
dc.date.issued2020
dc.identifier.citationISPRS Int. J. Geo-Inf, 2020, vol.9, n. 6, 343es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/59075
dc.descriptionProducción Científicaes
dc.description.abstractCrop growth modeling and yield forecasting are essential to improve food security policies worldwide. To estimate potato (Solanum tubersum L.) yield over Mexico at a municipal level, we used meteorological data provided by the ERA5 (ECMWF Re-Analysis) dataset developed by the Copernicus Climate Change Service, satellite imagery from the TERRA platform, and field information. Five different machine learning algorithms were used to build the models: random forest (rf), support vector machine linear (svmL), support vector machine polynomial (svmP), support vector machine radial (svmR), and general linear model (glm). The optimized models were tested using independent data (2017 and 2018) not used in the training and optimization phase (2004–2016). In terms of percent root mean squared error (%RMSE), the best results were obtained by the rf algorithm in the winter cycle using variables from the first three months of the cycle (R2 = 0.757 and %RMSE = 18.9). For the summer cycle, the best performing model was the svmP which used the first five months of the cycle as variables (R2 = 0.858 and %RMSE = 14.9). Our results indicated that adding predictor variables of the last two months before the harvest did not significantly improved model performances. These results demonstrate that our models can predict potato yield by analyzing the yield of the previous year, the general conditions of NDVI, meteorology, and information related to the irrigation system at a municipal level.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectFísicaes
dc.subjectTeledetecciónes
dc.subject.classificationPotato yieldes
dc.subject.classificationMeteorological dataes
dc.subject.classificationSatellite imageryes
dc.subject.classificationMunicipal leveles
dc.subject.classificationRendimiento de patatases
dc.subject.classificationDatos meteorológicoses
dc.subject.classificationImágenes de satélitees
dc.subject.classificationÁmbito municipales
dc.titleEstimation of potato yield using satellite data at a municipal level: A machine learning approaches
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2020 The Authorses
dc.identifier.doi10.3390/ijgi9060343es
dc.relation.publisherversionhttps://www.mdpi.com/2220-9964/9/6/343es
dc.identifier.publicationfirstpage343es
dc.identifier.publicationissue6es
dc.identifier.publicationtitleISPRS International Journal of Geo-Informationes
dc.identifier.publicationvolume9es
dc.peerreviewedSIes
dc.identifier.essn2220-9964es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco22 Físicaes
dc.subject.unesco3103.04 Protección de Los Cultivoses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem