• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Institutos de Investigación
    • Instituto Universitario de Investigación en Gestión Forestal Sostenible
    • IUGFS - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Institutos de Investigación
    • Instituto Universitario de Investigación en Gestión Forestal Sostenible
    • IUGFS - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59078

    Título
    Comparison of machine learning algorithms for wildland-urban interface fuelbreak planning integrating ALS and UAV-Borne LiDAR data and multispectral images
    Autor
    Rodríguez Puerta, FranciscoAutoridad UVA
    Alonso Ponce, Rafael
    Pérez Rodríguez, Fernando
    Agueda Hernández, BeatrizAutoridad UVA Orcid
    Martín García, Saray
    Martínez Rodrigo, RaquelAutoridad UVA Orcid
    Lizarralde, Iñigo
    Año del Documento
    2020
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Drones, 2020, vol. 4, n. 2, 21
    Resumen
    Controlling vegetation fuels around human settlements is a crucial strategy for reducing fire severity in forests, buildings and infrastructure, as well as protecting human lives. Each country has its own regulations in this respect, but they all have in common that by reducing fuel load, we in turn reduce the intensity and severity of the fire. The use of Unmanned Aerial Vehicles (UAV)-acquired data combined with other passive and active remote sensing data has the greatest performance to planning Wildland-Urban Interface (WUI) fuelbreak through machine learning algorithms. Nine remote sensing data sources (active and passive) and four supervised classification algorithms (Random Forest, Linear and Radial Support Vector Machine and Artificial Neural Networks) were tested to classify five fuel-area types. We used very high-density Light Detection and Ranging (LiDAR) data acquired by UAV (154 returns·m−2 and ortho-mosaic of 5-cm pixel), multispectral data from the satellites Pleiades-1B and Sentinel-2, and low-density LiDAR data acquired by Airborne Laser Scanning (ALS) (0.5 returns·m−2, ortho-mosaic of 25 cm pixels). Through the Variable Selection Using Random Forest (VSURF) procedure, a pre-selection of final variables was carried out to train the model. The four algorithms were compared, and it was concluded that the differences among them in overall accuracy (OA) on training datasets were negligible. Although the highest accuracy in the training step was obtained in SVML (OA=94.46%) and in testing in ANN (OA=91.91%), Random Forest was considered to be the most reliable algorithm, since it produced more consistent predictions due to the smaller differences between training and testing performance. Using a combination of Sentinel-2 and the two LiDAR data (UAV and ALS), Random Forest obtained an OA of 90.66% in training and of 91.80% in testing datasets. The differences in accuracy between the data sources used are much greater than between algorithms. LiDAR growth metrics calculated using point clouds in different dates and multispectral information from different seasons of the year are the most important variables in the classification. Our results support the essential role of UAVs in fuelbreak planning and management and thus, in the prevention of forest fires.
    Materias (normalizadas)
    Gestión forestal
    Algorithms
    Artificial intelligence
    Materias Unesco
    3106 Ciencia Forestal
    Palabras Clave
    Artificial intelligence
    UAV-LiDAR
    Satellite imagery
    Large-scale LiDAR
    Inteligencia artificial
    UAV-LiDAR
    Imágenes de satélite
    LiDAR a gran escala
    Revisión por pares
    SI
    DOI
    10.3390/drones4020021
    Patrocinador
    Ministerio de Economía, Industria y Competitividad (DI-16-08446; DI-17-09626; PTQ-16-08411; PTQ- 16-08633)
    European Commission through the project ‘MySustainableForest’ (H2020-EO-2017; 776045)
    Patrocinador
    info:eu-repo/grantAgreement/EC/H2020/776045
    Version del Editor
    https://www.mdpi.com/2504-446X/4/2/21
    Propietario de los Derechos
    © 2020 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/59078
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • IUGFS - Artículos de revista [140]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Comparison-of-Machine-Learning-Algorithms.pdf
    Tamaño:
    5.962Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10