Mostrar el registro sencillo del ítem

dc.contributor.authorMarcos Martínez, Diego
dc.contributor.authorMartínez Cagigal, Víctor 
dc.contributor.authorSantamaría Vázquez, Eduardo
dc.contributor.authorPérez Velasco, Sergio
dc.contributor.authorHornero Sánchez, Roberto 
dc.date.accessioned2023-04-13T11:08:28Z
dc.date.available2023-04-13T11:08:28Z
dc.date.issued2021
dc.identifier.citationEntropy, 2021, Vol. 23, Nº. 12, 1574es
dc.identifier.issn1099-4300es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/59100
dc.descriptionProducción Científicaes
dc.description.abstractNeurofeedback training (NFT) has shown promising results in recent years as a tool to address the effects of age-related cognitive decline in the elderly. Since previous studies have linked reduced complexity of electroencephalography (EEG) signal to the process of cognitive decline, we propose the use of non-linear methods to characterise changes in EEG complexity induced by NFT. In this study, we analyse the pre- and post-training EEG from 11 elderly subjects who performed an NFT based on motor imagery (MI–NFT). Spectral changes were studied using relative power (RP) from classical frequency bands (delta, theta, alpha, and beta), whilst multiscale entropy (MSE) was applied to assess EEG-induced complexity changes. Furthermore, we analysed the subject’s scores from Luria tests performed before and after MI–NFT. We found that MI–NFT induced a power shift towards rapid frequencies, as well as an increase of EEG complexity in all channels, except for C3. These improvements were most evident in frontal channels. Moreover, results from cognitive tests showed significant enhancement in intellectual and memory functions. Therefore, our findings suggest the usefulness of MI–NFT to improve cognitive functions in the elderly and encourage future studies to use MSE as a metric to characterise EEG changes induced by MI–NFT.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectBiofeedback traininges
dc.subjectEntrenamiento de biorretroalimentaciónes
dc.subjectEntropíaes
dc.subjectBrain-computer interfaceses
dc.subjectOlder people - Carees
dc.subjectPersonas de edad - Salud mentales
dc.subjectCogniciónes
dc.subjectNeuropsychologyes
dc.subjectNeuropsicologíaes
dc.subject.classificationNeurofeedback traininges
dc.subject.classificationMotor imageryes
dc.titleNeurofeedback training based on motor imagery strategies increases EEG complexity in elderly populationes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 The authorses
dc.identifier.doi10.3390/e23121574es
dc.relation.publisherversionhttps://www.mdpi.com/1099-4300/23/12/1574es
dc.identifier.publicationfirstpage1574es
dc.identifier.publicationissue12es
dc.identifier.publicationtitleEntropyes
dc.identifier.publicationvolume23es
dc.peerreviewedSIes
dc.description.projectMinisterio de Ciencia e Innovación (Grants PID2020-115468RB-I00 and RTC2019- 007350-1)es
dc.description.projectGobierno de España (Agencia Estatal de Investigación) - (Projects 10.13039/ 501100011033)es
dc.description.projectUnión Europea y Fondo Europeo de Desarrollo Regional (FEDER) - (Cooperation Programme Interreg V-A Spain-Portugal POCTEP 2014–2020)es
dc.identifier.essn1099-4300es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3201.07 Geriatríaes
dc.subject.unesco3205.07 Neurologíaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem