Mostrar el registro sencillo del ítem

dc.contributor.authorMerizalde Zamora, Yury Humberto
dc.contributor.authorHernández Callejo, Luis 
dc.contributor.authorDuque Pérez, Óscar 
dc.contributor.authorAlonso Gómez, Víctor 
dc.date.accessioned2023-05-08T12:23:52Z
dc.date.available2023-05-08T12:23:52Z
dc.date.issued2021
dc.identifier.citationApplied Sciences, 2021, Vol. 11, Nº. 15, 6942es
dc.identifier.issn2076-3417es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/59537
dc.descriptionProducción Científicaes
dc.description.abstractTo ensure the profitability of the wind industry, one of the most important objectives is to minimize maintenance costs. For this reason, the components of wind turbines are continuously monitored to detect any type of failure by analyzing the signals measured by the sensors included in the condition monitoring system. Most of the proposals for the detection and diagnosis of faults based on signal processing and artificial intelligence models use a fault-free signal and a signal acquired on a system in which a fault has been provoked; however, when the failures are incipient, the frequency components associated with the failures are very close to the fundamental component and there are incomplete data, the detection and diagnosis of failures is difficult. Therefore, the purpose of this research is to detect and diagnose failures of the electric generator of wind turbines in operation, using the current signal and applying generative adversarial networks to obtain synthetic data that allow for counteracting the problem of an unbalanced dataset. The proposal is useful for the detection of broken bars in squirrel cage induction generators, which, according to the control system, were in a healthy state.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectWind turbineses
dc.subjectArtificial intelligencees
dc.subjectInteligencia artificiales
dc.subjectMotores de inducciónes
dc.subject.classificationFaults diagnostices
dc.subject.classificationSynthetic dataes
dc.titleDiagnosis of broken bars in wind turbine squirrel cage induction generator: Approach based on current signal and generative adversarial networkses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 The authorses
dc.identifier.doi10.3390/app11156942es
dc.relation.publisherversionhttps://www.mdpi.com/2076-3417/11/15/6942es
dc.identifier.publicationfirstpage6942es
dc.identifier.publicationissue15es
dc.identifier.publicationtitleApplied Scienceses
dc.identifier.publicationvolume11es
dc.peerreviewedSIes
dc.identifier.essn2076-3417es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco3313.30 Turbinases


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem