• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Tecnología Electrónica
    • DEP69 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Tecnología Electrónica
    • DEP69 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59626

    Título
    Multiple endmember spectral mixture analysis (MESMA) applied to the study of habitat diversity in the fine-grained landscapes of the Cantabrian Mountains
    Autor
    Fernández García, Víctor
    Marcos Porras, Elena María
    Fernández Guisuraga, José Manuel
    Fernández Manso, Alfonso
    Quintano Pastor, María del CarmenAutoridad UVA Orcid
    Suárez Seoane, Susana
    Calvo, Leonor
    Año del Documento
    2021
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Remote Sensing, 2021, Vol. 13, Nº. 5, 979
    Abstract
    Heterogeneous and patchy landscapes where vegetation and abiotic factors vary at small spatial scale (fine-grained landscapes) represent a challenge for habitat diversity mapping using remote sensing imagery. In this context, techniques of spectral mixture analysis may have an advantage over traditional methods of land cover classification because they allow to decompose the spectral signature of a mixed pixel into several endmembers and their respective abundances. In this work, we present the application of Multiple Endmember Spectral Mixture Analysis (MESMA) to quantify habitat diversity and assess the compositional turnover at different spatial scales in the fine-grained landscapes of the Cantabrian Mountains (northwestern Iberian Peninsula). A Landsat-8 OLI scene and high-resolution orthophotographs (25 cm) were used to build a region-specific spectral library of the main types of habitats in this region (arboreal vegetation; shrubby vegetation; herbaceous vegetation; rocks–soil and water bodies). We optimized the spectral library with the Iterative Endmember Selection (IES) method and we applied MESMA to unmix the Landsat scene into five fraction images representing the five defined habitats (root mean square error, RMSE ≤ 0.025 in 99.45% of the pixels). The fraction images were validated by linear regressions using 250 reference plots from the orthophotographs and then used to calculate habitat diversity at the pixel (α-diversity: 30 × 30 m), landscape (γ-diversity: 1 × 1 km) and regional (ε-diversity: 110 × 33 km) scales and the compositional turnover (β- and δ-diversity) according to Simpson’s diversity index. Richness and evenness were also computed. Results showed that fraction images were highly related to reference data (R2 ≥ 0.73 and RMSE ≤ 0.18). In general, our findings indicated that habitat diversity was highly dependent on the spatial scale, with values for the Simpson index ranging from 0.20 ± 0.22 for α-diversity to 0.60 ± 0.09 for γ-diversity and 0.72 ± 0.11 for ε-diversity. Accordingly, we found β-diversity to be higher than δ-diversity. This work contributes to advance in the estimation of ecological diversity in complex landscapes, showing the potential of MESMA to quantify habitat diversity in a comprehensive way using Landsat imagery.
    Materias (normalizadas)
    Image processing - Digital techniques
    Spectroscopic imaging
    Spectrum analysis
    Spectral imaging
    Iberian Peninsula
    Paisaje - España - Cordillera Cantábrica
    Materias Unesco
    3307 Tecnología Electrónica
    Palabras Clave
    Spectral unmixing
    Landsat-8 OLI
    ISSN
    2072-4292
    Revisión por pares
    SI
    DOI
    10.3390/rs13050979
    Patrocinador
    Ministerio de Agricultura, Pesca y Alimentación - (Project 0190020007497)
    Ministerio de Educación, Cultura y Deporte - (Project FPU16/03070)
    Version del Editor
    https://www.mdpi.com/2072-4292/13/5/979
    Propietario de los Derechos
    © 2021 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/59626
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Collections
    • DEP69 - Artículos de revista [32]
    Show full item record
    Files in this item
    Nombre:
    Multiple-Endmember-Spectral-Mixture-Analysis.pdf
    Tamaño:
    3.357Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen
    Atribución 4.0 InternacionalExcept where otherwise noted, this item's license is described as Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10