Mostrar el registro sencillo del ítem

dc.contributor.authorCepeda, Santiago
dc.contributor.authorPérez Núñez, Ángel
dc.contributor.authorGarcía García, Sergio
dc.contributor.authorArrese, Ignacio
dc.contributor.authorJiménez Roldán, Luis
dc.contributor.authorGarcía Galindo, Manuel
dc.contributor.authorGonzález, Pedro
dc.contributor.authorVelasco Casares, María
dc.contributor.authorZamora, Tomas
dc.contributor.authorSarabia Herrero, María Rosario 
dc.date.accessioned2023-05-18T11:08:29Z
dc.date.available2023-05-18T11:08:29Z
dc.date.issued2021
dc.identifier.citationCancers, 2021, vol. 13, n. 20, 5047es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/59639
dc.descriptionProducción Científicaes
dc.description.abstractRadiomics, in combination with artificial intelligence, has emerged as a powerful tool for the development of predictive models in neuro-oncology. Our study aims to find an answer to a clinically relevant question: is there a radiomic profile that can identify glioblastoma (GBM) patients with short-term survival after complete tumor resection? A retrospective study of GBM patients who underwent surgery was conducted in two institutions between January 2019 and January 2020, along with cases from public databases. Cases with gross total or near total tumor resection were included. Preoperative structural multiparametric magnetic resonance imaging (mpMRI) sequences were pre-processed, and a total of 15,720 radiomic features were extracted. After feature reduction, machine learning-based classifiers were used to predict early mortality (<6 months). Additionally, a survival analysis was performed using the random survival forest (RSF) algorithm. A total of 203 patients were enrolled in this study. In the classification task, the naive Bayes classifier obtained the best results in the test data set, with an area under the curve (AUC) of 0.769 and classification accuracy of 80%. The RSF model allowed the stratification of patients into low- and high-risk groups. In the test data set, this model obtained values of C-Index = 0.61, IBS = 0.123 and integrated AUC at six months of 0.761. In this study, we developed a reliable predictive model of short-term survival in GBM by applying open-source and user-friendly computational means. These new tools will assist clinicians in adapting our therapeutic approach considering individual patient characteristics.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectNeuroscienceses
dc.subjectCancer Researches
dc.subjectArtificial intelligencees
dc.subject.classificationGlioblastomaes
dc.subject.classificationRadiomicses
dc.subject.classificationTexture analysises
dc.subject.classificationSurvivales
dc.subject.classificationRadiómicaes
dc.subject.classificationAnálisis de texturaes
dc.subject.classificationSupervivenciaes
dc.titlePredicting short-term survival after gross total or near total resection in glioblastomas by machine learning-based radiomic analysis of preoperative MRIes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2021 The Authorses
dc.identifier.doi10.3390/cancers13205047es
dc.relation.publisherversionhttps://www.mdpi.com/2072-6694/13/20/5047es
dc.identifier.publicationfirstpage5047es
dc.identifier.publicationissue20es
dc.identifier.publicationtitleCancerses
dc.identifier.publicationvolume13es
dc.peerreviewedSIes
dc.identifier.essn2072-6694es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco2490 Neurocienciases
dc.subject.unesco3213.08 Neurocirugíaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem