Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59664
Título
Automated medical diagnosis of alzheimer´s disease using an Efficient Net convolutional neural network
Autor
Año del Documento
2023
Editorial
Springer
Descripción
Producción Científica
Documento Fuente
Journal of Medical Systems, 2023, vol.47, n. 1, art. 57.
Resumen
Alzheimer's disease (AD) poses an enormous challenge to modern healthcare. Since 2017, researchers have been using deep learning (DL) models for the early detection of AD using neuroimaging biomarkers. In this paper, we implement the EfficietNet-b0 convolutional neural network (CNN) with a novel approach—"fusion of end-to-end and transfer learning"—to classify different stages of AD. 245 T1W MRI scans of cognitively normal (CN) subjects, 229 scans of AD subjects, and 229 scans of subjects with stable mild cognitive impairment (sMCI) were employed. Each scan was preprocessed using a standard pipeline. The proposed models were trained and evaluated using preprocessed scans. For the sMCI vs. AD classification task we obtained 95.29% accuracy and 95.35% area under the curve (AUC) for model training and 93.10% accuracy and 93.00% AUC for model testing. For the multiclass AD vs. CN vs. sMCI classification task we obtained 85.66% accuracy and 86% AUC for model training and 87.38% accuracy and 88.00% AUC for model testing. Based on our experimental results, we conclude that CNN-based DL models can be used to analyze complicated MRI scan features in clinical settings.
Materias Unesco
33 Ciencias Tecnológicas
Palabras Clave
Alzheimer´s disease
Convolutional neural network
Deep learning
EfficientNet
Mild cognitive impairment
MRI
MONAI
Transfer learning
ISSN
0148-5598
Revisión por pares
SI
Patrocinador
Publicación en abierto financiada por el Consorcio de Bibliotecas Universitarias de Castilla y León (BUCLE), con cargo al Programa Operativo 2014ES16RFOP009 FEDER 2014-2020 DE CASTILLA Y LEÓN, Actuación:20007-CL - Apoyo Consorcio BUCLE
Version del Editor
Propietario de los Derechos
© 2023 The Author(s)
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional