Mostrar el registro sencillo del ítem

dc.contributor.authorGarcía Escudero, Luis Ángel 
dc.contributor.authorGordaliza Ramos, Alfonso 
dc.contributor.authorMatrán Bea, Carlos 
dc.contributor.authorMayo Iscar, Agustín 
dc.contributor.editorUniversidad de Valladolid es
dc.date.accessioned2014-09-15T20:07:44Z
dc.date.available2014-09-15T20:07:44Z
dc.date.issued2014
dc.identifier.urihttp://uvadoc.uva.es/handle/10324/5966
dc.descriptionProducción Científicaes
dc.description.abstractThe maximum likelihood estimation in the finite mixture of distributions setting is an ill-posed problem that is treatable, in practice, through the EM algorithm. However, the existence of spurious solutions (singularities and non-interesting local maximizers) makes difficult to find sensible mixture fits for non-expert practitioners. In this work, a constrained mixture fitting approach is presented with the aim of overcoming the troubles introduced by spurious solutions. Sound mathematical support is provided and, which is more relevant in practice, a feasible algorithm is also given. This algorithm allows for monitoring solutions in terms of the constant involved in the restrictions, which yields a natural way to discard spurious solutions and a valuable tool for data analysts.es
dc.description.sponsorshipEstadística e IOes
dc.format.mimetypeapplication/pdfes
dc.language.isospaes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/
dc.subjectStatisticses
dc.titleAvoiding Spurious Local Maximizers in Mixture Modelinges
dc.typeinfo:eu-repo/semantics/preprintes
dc.rightsAttribution 4.0 International


Ficheros en el ítem

Thumbnail
Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem