Mostrar el registro sencillo del ítem
dc.contributor.author | García Escudero, Luis Ángel | |
dc.contributor.author | Gordaliza Ramos, Alfonso | |
dc.contributor.author | Matrán Bea, Carlos | |
dc.contributor.author | Mayo Iscar, Agustín | |
dc.contributor.editor | Universidad de Valladolid | es |
dc.date.accessioned | 2014-09-15T20:07:44Z | |
dc.date.available | 2014-09-15T20:07:44Z | |
dc.date.issued | 2014 | |
dc.identifier.uri | http://uvadoc.uva.es/handle/10324/5966 | |
dc.description | Producción Científica | es |
dc.description.abstract | The maximum likelihood estimation in the finite mixture of distributions setting is an ill-posed problem that is treatable, in practice, through the EM algorithm. However, the existence of spurious solutions (singularities and non-interesting local maximizers) makes difficult to find sensible mixture fits for non-expert practitioners. In this work, a constrained mixture fitting approach is presented with the aim of overcoming the troubles introduced by spurious solutions. Sound mathematical support is provided and, which is more relevant in practice, a feasible algorithm is also given. This algorithm allows for monitoring solutions in terms of the constant involved in the restrictions, which yields a natural way to discard spurious solutions and a valuable tool for data analysts. | es |
dc.description.sponsorship | Estadística e IO | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | spa | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | |
dc.subject | Statistics | es |
dc.title | Avoiding Spurious Local Maximizers in Mixture Modeling | es |
dc.type | info:eu-repo/semantics/preprint | es |
dc.rights | Attribution 4.0 International |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Attribution 4.0 International