Mostrar el registro sencillo del ítem
dc.contributor.author | Gorgoso Varela, J. Javier | |
dc.contributor.author | Alonso Ponce, Rafael | |
dc.contributor.author | Rodríguez Puerta, Francisco | |
dc.date.accessioned | 2023-06-09T11:25:56Z | |
dc.date.available | 2023-06-09T11:25:56Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Remote Sensing, 2021, Vol. 13, Nº. 12, 2307 | es |
dc.identifier.issn | 2072-4292 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/59808 | |
dc.description | Producción Científica | es |
dc.description.abstract | The diameter distributions of trees in 50 temporary sample plots (TSPs) established in Pinus halepensis Mill. stands were recovered from LiDAR metrics by using six probability density functions (PDFs): the Weibull (2P and 3P), Johnson’s SB, beta, generalized beta and gamma-2P functions. The parameters were recovered from the first and the second moments of the distributions (mean and variance, respectively) by using parameter recovery models (PRM). Linear models were used to predict both moments from LiDAR data. In recovering the functions, the location parameters of the distributions were predetermined as the minimum diameter inventoried, and scale parameters were established as the maximum diameters predicted from LiDAR metrics. The Kolmogorov–Smirnov (KS) statistic (Dn), number of acceptances by the KS test, the Cramér von Misses (W2) statistic, bias and mean square error (MSE) were used to evaluate the goodness of fits. The fits for the six recovered functions were compared with the fits to all measured data from 58 TSPs (LiDAR metrics could only be extracted from 50 of the plots). In the fitting phase, the location parameters were fixed at a suitable value determined according to the forestry literature (0.75·dmin). The linear models used to recover the two moments of the distributions and the maximum diameters determined from LiDAR data were accurate, with R2 values of 0.750, 0.724 and 0.873 for dg, dmed and dmax. Reasonable results were obtained with all six recovered functions. The goodness-of-fit statistics indicated that the beta function was the most accurate, followed by the generalized beta function. The Weibull-3P function provided the poorest fits and the Weibull-2P and Johnson’s SB also yielded poor fits to the data. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Pino Carrasco - Crecimiento | es |
dc.subject | Dendrocronología | es |
dc.subject | Clima - Cambios | es |
dc.subject | Pine | es |
dc.subject | Pinos - España | es |
dc.subject | Pinos - Crecimiento | es |
dc.subject | Bosques y silvicultura - España | es |
dc.title | Modeling diameter distributions with six probability density functions in Pinus halepensis Mill. Plantations using low-density airborne laser scanning data in Aragón (northeast Spain) | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2021 The authors | es |
dc.identifier.doi | 10.3390/rs13122307 | es |
dc.relation.publisherversion | https://www.mdpi.com/2072-4292/13/12/2307 | es |
dc.identifier.publicationfirstpage | 2307 | es |
dc.identifier.publicationissue | 12 | es |
dc.identifier.publicationtitle | Remote Sensing | es |
dc.identifier.publicationvolume | 13 | es |
dc.peerreviewed | SI | es |
dc.description.project | Ministerio de Economía, Industria y Competitividad, Ayudas Torres Quevedo- (grant PTQ-16-08445) | es |
dc.description.project | Fondo Europeo Agrario de Desarrollo Rural (FEADER) Programa de Desarrollo Rural de Aragón 2014-2020 - (project RF-64079) | es |
dc.identifier.essn | 2072-4292 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 3106 Ciencia Forestal | es |
dc.subject.unesco | 3106.08 Silvicultura | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional