Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/59926
Título
A deep learning approach for brain tumor classification and segmentation using a multiscale convolutional neural network
Autor
Año del Documento
2021
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Healthcare, 2021, Vol. 9, Nº. 2, 153
Resumo
In this paper, we present a fully automatic brain tumor segmentation and classification model using a Deep Convolutional Neural Network that includes a multiscale approach. One of the differences of our proposal with respect to previous works is that input images are processed in three spatial scales along different processing pathways. This mechanism is inspired in the inherent operation of the Human Visual System. The proposed neural model can analyze MRI images containing three types of tumors: meningioma, glioma, and pituitary tumor, over sagittal, coronal, and axial views and does not need preprocessing of input images to remove skull or vertebral column parts in advance. The performance of our method on a publicly available MRI image dataset of 3064 slices from 233 patients is compared with previously classical machine learning and deep learning published methods. In the comparison, our method remarkably obtained a tumor classification accuracy of 0.973, higher than the other approaches using the same database
Materias (normalizadas)
Brain - Tumors - Diagnosis
Tumors cerebrals
Cerebro - Tumores
Neurology
Machine learning
Artificial intelligence
Neural networks (Computer science)
Redes neuronales (Informática)
Signal processing
Statistics
Estadística
Magnetic resonance
Resonancia Magnética
Materias Unesco
3205.07 Neurología
1209.03 Análisis de Datos
ISSN
2227-9032
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© 2021 The authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Arquivos deste item
Tamaño:
9.239Mb
Formato:
Adobe PDF
Exceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional