• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Stöbern

    Gesamter BestandBereicheErscheinungsdatumAutorenSchlagwortenTiteln

    Mein Benutzerkonto

    Einloggen

    Statistik

    Benutzungsstatistik

    Compartir

    Dokumentanzeige 
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Dokumentanzeige
    •   UVaDOC Startseite
    • WISSENSCHAFTLICHE ARBEITEN
    • Institutos de Investigación
    • Instituto de las Tecnologías Avanzadas en la Producción (ITAP)
    • ITAP - Artículos de revista
    • Dokumentanzeige
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/60065

    Título
    One Shot Learning with class partitioning and cross validation voting (CP-CVV)
    Autor
    Duque Domingo, JaimeAutoridad UVA Orcid
    Medina Aparicio, Roberto
    González Rodrigo, Luis Miguel
    Año del Documento
    2023
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Pattern Recognition, 2023, vol. 143, 109797
    Zusammenfassung
    One Shot Learning includes all those techniques that make it possible to classify images using a single image per category. One of its possible applications is the identification of food products. For a grocery store, it is interesting to record a single image of each product and be able to recognise it again from other images, such as photos taken by customers. Within deep learning, Siamese neural networks are able to verify whether two images belong to the same category or not. In this paper, a new Siamese network training technique, called CP-CVV, is presented. It uses the combination of different models trained with different classes. The separation of validation classes has been done in such a way that each of the combined models is different in order to avoid overfitting with respect to the validation. Unlike normal training, the test images belong to classes that have not previously been used in training, allowing the model to work on new categories, of which only one image exists. Different backbones have been evaluated in the Siamese composition, but also the integration of multiple models with different backbones. The results show that the model improves on previous works and allows the classification problem to be solved, an additional step towards the use of Siamese networks. To the best of our knowledge, there is no existing work that has proposed integrating Siamese neural networks using a class-based validation set separation technique so as to be better at generalising for unknown classes. Additionally, we have applied Cross-Validation-Voting with ConvNeXt to improve the existing classification results of a well-known Grocery Store Dataset.
    Materias (normalizadas)
    Artificial intelligence
    Image Processing and Computer Vision
    Materias Unesco
    33 Ciencias Tecnológicas
    Palabras Clave
    One shot learning
    Grocery Product Classification
    Wide ResNet
    Clasificación de productos de alimentación
    ResNet amplia
    ISSN
    0031-3203
    Revisión por pares
    SI
    DOI
    10.1016/j.patcog.2023.109797
    Patrocinador
    The Centre for the Development of Industrial Technology (CDTI) and by the Instituto para la Competitividad Empresarial de Castilla y León - FEDER (Project CCTT3/20/VA/0003)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0031320323004958?via%3Dihub
    Propietario de los Derechos
    © 2023 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/60065
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • ITAP - Artículos de revista [53]
    Zur Langanzeige
    Dateien zu dieser Ressource
    Nombre:
    One-Shot-Learning-with-class.pdf
    Tamaño:
    2.508Mb
    Formato:
    Adobe PDF
    Thumbnail
    Öffnen
    Atribución 4.0 InternacionalSolange nicht anders angezeigt, wird die Lizenz wie folgt beschrieben: Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10