Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/60500
Título
A novel smart belt for anxiety detection, classification, and reduction using IIoMT on students’ cardiac signal and MSY
Autor
Año del Documento
2022
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Bioengineering, 2022, Vol. 9, Nº. 12, 793
Resumen
The prevalence of anxiety among university students is increasing, resulting in the negative impact on their academic and social (behavioral and emotional) development. In order for students to have competitive academic performance, the cognitive function should be strengthened by detecting and handling anxiety. Over a period of 6 weeks, this study examined how to detect anxiety and how Mano Shakti Yoga (MSY) helps reduce anxiety. Relying on cardiac signals, this study follows an integrated detection-estimation-reduction framework for anxiety using the Intelligent Internet of Medical Things (IIoMT) and MSY. IIoMT is the integration of Internet of Medical Things (wearable smart belt) and machine learning algorithms (Decision Tree (DT), Random Forest (RF), and AdaBoost (AB)). Sixty-six eligible students were selected as experiencing anxiety detected based on the results of self-rating anxiety scale (SAS) questionnaire and a smart belt. Then, the students were divided randomly into two groups: experimental and control. The experimental group followed an MSY intervention for one hour twice a week, while the control group followed their own daily routine. Machine learning algorithms are used to analyze the data obtained from the smart belt. MSY is an alternative improvement for the immune system that helps reduce anxiety. All the results illustrate that the experimental group reduced anxiety with a significant (p < 0.05) difference in group × time interaction compared to the control group. The intelligent techniques achieved maximum accuracy of 80% on using RF algorithm. Thus, students can practice MSY and concentrate on their objectives by improving their intelligence, attention, and memory.
Materias (normalizadas)
Yoga
Anxiety
Ansiedad
Machine learning
Aprendizaje automático
Internet of things
Artificial intelligence - Medical applications
Inteligencia artificial - Aplicaciones médicas
Artificial intelligence
Students
Estudiantes
Anxiety - Treatment
Ansiedad - Tratamiento
Integrative medicine
Exercise
Ejercicio
Health
Salud
Brain
Cerebro
Mental health
Salud mental
Materias Unesco
1203.04 Inteligencia Artificial
3212 Salud Publica
ISSN
2306-5354
Revisión por pares
SI
Patrocinador
Sichuan Science y Programa de Tecnología - (2020YJ0225)
China NSFC - (U2001207 y 61872248)
Guangdong NSF - (2017A03031200385)
Fundación de Ciencia y Tecnología de Shenzhen - (ZDSYS20190902092853047 y R2020A045)
Project of DEGP - (2019KCXTD005)
Guangdong “Pearl River Talent Recruitment Program” - (2019ZT08X603)
China NSFC - (U2001207 y 61872248)
Guangdong NSF - (2017A03031200385)
Fundación de Ciencia y Tecnología de Shenzhen - (ZDSYS20190902092853047 y R2020A045)
Project of DEGP - (2019KCXTD005)
Guangdong “Pearl River Talent Recruitment Program” - (2019ZT08X603)
Version del Editor
Propietario de los Derechos
© 2022 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
Tamaño:
1.091Mb
Formato:
Adobe PDF
La licencia del ítem se describe como Atribución 4.0 Internacional