• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/60685

    Título
    Predicting genetic disorder and types of disorder using chain classifier approach
    Autor
    Raza, Ali
    Rustam, Furqan
    Siddiqui, Hafeez Ur Rehman
    Torre Díez, Isabel de laAutoridad UVA Orcid
    Garcia Zapirain, Begonya
    Lee, Ernesto
    Ashraf, Imran
    Año del Documento
    2023
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Genes, 2023, Vol. 14, Nº. 1, 71
    Resumen
    Genetic disorders are the result of mutation in the deoxyribonucleic acid (DNA) sequence which can be developed or inherited from parents. Such mutations may lead to fatal diseases such as Alzheimer’s, cancer, Hemochromatosis, etc. Recently, the use of artificial intelligence-based methods has shown superb success in the prediction and prognosis of different diseases. The potential of such methods can be utilized to predict genetic disorders at an early stage using the genome data for timely treatment. This study focuses on the multi-label multi-class problem and makes two major contributions to genetic disorder prediction. A novel feature engineering approach is proposed where the class probabilities from an extra tree (ET) and random forest (RF) are joined to make a feature set for model training. Secondly, the study utilizes the classifier chain approach where multiple classifiers are joined in a chain and the predictions from all the preceding classifiers are used by the conceding classifiers to make the final prediction. Because of the multi-label multi-class data, macro accuracy, Hamming loss, and α-evaluation score are used to evaluate the performance. Results suggest that extreme gradient boosting (XGB) produces the best scores with a 92% α-evaluation score and a 84% macro accuracy score. The performance of XGB is much better than state-of-the-art approaches, in terms of both performance and computational complexity.
    Materias (normalizadas)
    Genetics
    Human genetics
    Genética humana
    Mutation (Biologie)
    Mutación (Biología)
    Genetic disorders
    Machine learning
    Aprendizaje automático
    Materias Unesco
    2409 Genética
    2409.02 Ingeniería Genética
    Palabras Clave
    Chain classifier approach
    Enfoque clasificador de cadena
    ISSN
    2073-4425
    Revisión por pares
    SI
    DOI
    10.3390/genes14010071
    Version del Editor
    https://www.mdpi.com/2073-4425/14/1/71
    Propietario de los Derechos
    © 2022 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/60685
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    Predicting-Genetic-Disorder.pdf
    Tamaño:
    2.478Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10