Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/60685
Título
Predicting genetic disorder and types of disorder using chain classifier approach
Autor
Año del Documento
2023
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Genes, 2023, Vol. 14, Nº. 1, 71
Resumen
Genetic disorders are the result of mutation in the deoxyribonucleic acid (DNA) sequence which can be developed or inherited from parents. Such mutations may lead to fatal diseases such as Alzheimer’s, cancer, Hemochromatosis, etc. Recently, the use of artificial intelligence-based methods has shown superb success in the prediction and prognosis of different diseases. The potential of such methods can be utilized to predict genetic disorders at an early stage using the genome data for timely treatment. This study focuses on the multi-label multi-class problem and makes two major contributions to genetic disorder prediction. A novel feature engineering approach is proposed where the class probabilities from an extra tree (ET) and random forest (RF) are joined to make a feature set for model training. Secondly, the study utilizes the classifier chain approach where multiple classifiers are joined in a chain and the predictions from all the preceding classifiers are used by the conceding classifiers to make the final prediction. Because of the multi-label multi-class data, macro accuracy, Hamming loss, and α-evaluation score are used to evaluate the performance. Results suggest that extreme gradient boosting (XGB) produces the best scores with a 92% α-evaluation score and a 84% macro accuracy score. The performance of XGB is much better than state-of-the-art approaches, in terms of both performance and computational complexity.
Materias (normalizadas)
Genetics
Human genetics
Genética humana
Mutation (Biologie)
Mutación (Biología)
Genetic disorders
Machine learning
Aprendizaje automático
Materias Unesco
2409 Genética
2409.02 Ingeniería Genética
Palabras Clave
Chain classifier approach
Enfoque clasificador de cadena
ISSN
2073-4425
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© 2022 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional