Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/61044
Título
Thyroid disease prediction using selective features and machine learning techniques
Autor
Año del Documento
2022
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Cancers, 2022, Vol. 14, Nº. 16, 3914
Resumen
Simple Summary: The study presents a thyroid disease prediction approach which utilizes random
forest-based features to obtain high accuracy. The approach can obtain a 0.99 accuracy to predict
ten thyroid diseases. Thyroid disease prediction has emerged as an important task recently. Despite existing approaches for its diagnosis, often the target is binary classification, the used datasets are small-sized and results are not validated either. Predominantly, existing approaches focus on model optimization and the feature engineering part is less investigated. To overcome these limitations, this study presents an approach that investigates feature engineering for machine learning and deep learning models. Forward feature selection, backward feature elimination, bidirectional feature elimination, and machine learning-based feature selection using extra tree classifiers are adopted. The proposed approach can predict Hashimoto’s thyroiditis (primary hypothyroid), binding protein (increased binding protein), autoimmune thyroiditis (compensated hypothyroid), and non-thyroidal syndrome (NTIS) (concurrent non-thyroidal illness). Extensive experiments show that the extra tree classifier-based selected feature yields the best results with 0.99 accuracy and an F1 score when used with the random forest classifier. Results suggest that the machine learning models are a better choice for thyroid disease detection regarding the provided accuracy and the computational complexity. K-fold cross-validation and performance comparison with existing studies corroborate the superior performance of the proposed approach.
Materias (normalizadas)
Machine learning
Aprendizaje automático
Thyroid Diseases
Tiroides - Enfermedades
Thyroid gland - Diseases - Diagnosis
Tiroides - Enfermedades - Diagnóstico
Endocrinology
Materias Unesco
3205.02 Endocrinología
32 Ciencias Médicas
3311.01 Tecnología de la Automatización
ISSN
2072-6694
Revisión por pares
SI
Version del Editor
Propietario de los Derechos
© 2022 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
La licencia del ítem se describe como Atribución 4.0 Internacional