Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/61199
Título
Insight into ADHD diagnosis with deep learning on Actimetry: Quantitative interpretation of occlusion maps in age and gender subgroups
Autor
Año del Documento
2023
Editorial
Elsevier
Descripción
Producción Científica
Documento Fuente
Artificial Intelligence in Medicine, 2023, vol. 143, 102630
Abstract
Attention Deficit/Hyperactivity Disorder (ADHD) is a prevalent neurodevelopmental disorder in childhood that often persists into adulthood. Objectively diagnosing ADHD can be challenging due to the reliance on subjective questionnaires in clinical assessment. Fortunately, recent advancements in artificial intelligence (AI) have shown promise in providing objective diagnoses through the analysis of medical images or activity recordings. These AI-based techniques have demonstrated accurate ADHD diagnosis; however, the growing complexity of deep learning models has introduced a lack of interpretability. These models often function as black boxes, unable to offer meaningful insights into the data patterns that characterize ADHD.
Materias (normalizadas)
Diagnóstico
Hiperactividad
Materias Unesco
3205.07 Neurología
32 Ciencias Médicas
Palabras Clave
ADHD
Actigraphy
Deep learning
TDAH
Actigrafía
Aprendizaje profundo
ISSN
0933-3657
Revisión por pares
SI
Patrocinador
Agencia Estatal de Investigación (grants PID2020-115339RB-I00, TED2021-130090B-I00 and TED2021-131536B-I00)
EU Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement (101008297)
Company ESAOTE Ltd (grant 18IQBM)
EU Horizon 2020 Research and Innovation Programme under the Marie Sklodowska-Curie grant agreement (101008297)
Company ESAOTE Ltd (grant 18IQBM)
Patrocinador
info:eu-repo/grantAgreement/EC/H2020/101008297
Propietario de los Derechos
© 2023 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Files in questo item
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional