Mostrar el registro sencillo del ítem

dc.contributor.authorNúñez Carrero, Karina Carla
dc.contributor.authorVelasco Merino, Cristian 
dc.contributor.authorAsensio Valentín, María 
dc.contributor.authorGuerrero, Julia
dc.contributor.authorMerino Senovilla, Juan Carlos 
dc.date.accessioned2023-08-30T08:41:00Z
dc.date.available2023-08-30T08:41:00Z
dc.date.issued2022
dc.identifier.citationPolymers, 2022, Vol. 14, Nº. 17, 3683es
dc.identifier.issn2073-4360es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/61221
dc.descriptionProducción Científicaes
dc.description.abstractThis article presents, for the first time, the results of applying the rheological technique to measure the molecular weights (Mw) and their distributions (MwD) of highly hierarchical biomolecules, such as non-hydrolyzed collagen gels. Due to the high viscosity of the studied gels, the effect of the concentrations on the rheological tests was investigated. In addition, because these materials are highly sensitive to denaturation and degradation under mechanical stress and temperatures close to 40 °C, when frequency sweeps were applied, a mathematical adjustment of the data by machine learning techniques (artificial intelligence tools) was designed and implemented. Using the proposed method, collagen fibers of Mw close to 600 kDa were identified. To validate the proposed method, lower Mw species were obtained and characterized by both the proposed rheological method and traditional measurement techniques, such as chromatography and electrophoresis. The results of the tests confirmed the validity of the proposed method. It is a simple technique for obtaining more microstructural information on these biomolecules and, in turn, facilitating the design of new structural biomaterials with greater added value.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectCollagenes
dc.subjectColágenoes
dc.subjectPolymerses
dc.subjectPolímeros y polimerizaciónes
dc.subjectRheologyes
dc.subjectReologíaes
dc.subjectMolecular weightses
dc.subjectMachine learninges
dc.subjectAprendizaje automáticoes
dc.titleRheological method for determining the molecular weight of collagen gels by using a machine learning techniquees
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Authorses
dc.identifier.doi10.3390/polym14173683es
dc.relation.publisherversionhttps://www.mdpi.com/2073-4360/14/17/3683es
dc.identifier.publicationfirstpage3683es
dc.identifier.publicationissue17es
dc.identifier.publicationtitlePolymerses
dc.identifier.publicationvolume14es
dc.peerreviewedSIes
dc.description.projectInstituto para la Competitividad Empresarial de Castilla y León (ICE), PROYECTOS I + D CENTROS TECNOLÓGICOS - (project CCTT3/20/VA/0006)es
dc.description.projectUniversidad de Valladolid - Postdoctoral Contract CONVOCATORIA 2020 (K.C.N.C)es
dc.identifier.essn2073-4360es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco22 Físicaes
dc.subject.unesco23 Químicaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem