Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/61221
Título
Rheological method for determining the molecular weight of collagen gels by using a machine learning technique
Autor
Año del Documento
2022
Editorial
MDPI
Descripción
Producción Científica
Documento Fuente
Polymers, 2022, Vol. 14, Nº. 17, 3683
Resumen
This article presents, for the first time, the results of applying the rheological technique to measure the molecular weights (Mw) and their distributions (MwD) of highly hierarchical biomolecules, such as non-hydrolyzed collagen gels. Due to the high viscosity of the studied gels, the effect of the concentrations on the rheological tests was investigated. In addition, because these materials are highly sensitive to denaturation and degradation under mechanical stress and temperatures close to 40 °C, when frequency sweeps were applied, a mathematical adjustment of the data by machine learning techniques (artificial intelligence tools) was designed and implemented. Using the proposed method, collagen fibers of Mw close to 600 kDa were identified. To validate the proposed method, lower Mw species were obtained and characterized by both the proposed rheological method and traditional measurement techniques, such as chromatography and electrophoresis. The results of the tests confirmed the validity of the proposed method. It is a simple technique for obtaining more microstructural information on these biomolecules and, in turn, facilitating the design of new structural biomaterials with greater added value.
Materias (normalizadas)
Collagen
Colágeno
Polymers
Polímeros y polimerización
Rheology
Reología
Molecular weights
Machine learning
Aprendizaje automático
Materias Unesco
22 Física
23 Química
ISSN
2073-4360
Revisión por pares
SI
Patrocinador
Instituto para la Competitividad Empresarial de Castilla y León (ICE), PROYECTOS I + D CENTROS TECNOLÓGICOS - (project CCTT3/20/VA/0006)
Universidad de Valladolid - Postdoctoral Contract CONVOCATORIA 2020 (K.C.N.C)
Universidad de Valladolid - Postdoctoral Contract CONVOCATORIA 2020 (K.C.N.C)
Version del Editor
Propietario de los Derechos
© 2022 The Authors
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
Ficheros en el ítem
Tamaño:
1.801Mb
Formato:
Adobe PDF
La licencia del ítem se describe como Atribución 4.0 Internacional