Mostrar el registro sencillo del ítem

dc.contributor.authorRodríguez González, Víctor 
dc.contributor.authorNúñez Novo, Pablo 
dc.contributor.authorGómez Peña, Carlos 
dc.contributor.authorShigihara, Yoshihito
dc.contributor.authorHoshi, Hideyuki
dc.contributor.authorTola Arribas, Miguel Ángel 
dc.contributor.authorCano, Mónica
dc.contributor.authorGuerrero Peral, Angel Luis 
dc.contributor.authorGarcía Azorín, David
dc.contributor.authorHornero Sánchez, Roberto 
dc.contributor.authorPoza Crespo, Jesús 
dc.date.accessioned2023-09-11T11:14:40Z
dc.date.available2023-09-11T11:14:40Z
dc.date.issued2023
dc.identifier.citationNeuroImage, 2023, vol. 280, 120332es
dc.identifier.issn1053-8119es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/61503
dc.descriptionProducción Científicaes
dc.description.abstractThe majority of electroencephalographic (EEG) and magnetoencephalographic (MEG) studies filter and analyse neural signals in specific frequency ranges, known as “canonical” frequency bands. However, this segmentation, is not exempt from limitations, mainly due to the lack of adaptation to the neural idiosyncrasies of each individual. In this study, we introduce a new data-driven method to automatically identify frequency ranges based on the topological similarity of the frequency-dependent functional neural network. The resting-state neural activity of 195 cognitively healthy subjects from three different databases (MEG: 123 subjects; EEG1: 27 subjects; EEG2: 45 subjects) was analysed. In a first step, MEG and EEG signals were filtered with a narrow-band filter bank (1 Hz bandwidth) from 1 to 70 Hz with a 0.5 Hz step. Next, the connectivity in each of these filtered signals was estimated using the orthogonalized version of the amplitude envelope correlation to obtain the frequency-dependent functional neural network. Finally, a community detection algorithm was used to identify communities in the frequency domain showing a similar network topology. We have called this approach the “Connectivity-based Meta-Bands” (CMB) algorithm. Additionally, two types of synthetic signals were used to configure the hyper-parameters of the CMB algorithm. We observed that the classical approaches to band segmentation are partially aligned with the underlying network topologies at group level for the MEG signals, but they are missing individual idiosyncrasies that may be biasing previous studies, as revealed by our methodology. On the other hand, the sensitivity of EEG signals to reflect this underlying frequency-dependent network structure is limited, revealing a simpler frequency parcellation, not aligned with that defined by the “canonical” frequency bands. To the best of our knowledge, this is the first study that proposes an unsupervised band segmentation method based on the topological similarity of functional neural network across frequencies. This methodology fully accounts for subject-specific patterns, providing more robust and personalized analyses, and paving the way for new studies focused on exploring the frequency-dependent structure of brain connectivity.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subjectNeuroscienceses
dc.subjectElectrical engineeringes
dc.subject.classificationFunctional networkes
dc.subject.classificationFrequency bandses
dc.subject.classificationLouvain community detectiones
dc.subject.classificationRed funcionales
dc.subject.classificationBandas de frecuenciaes
dc.subject.classificationDetección de la comunidad de Lovainaes
dc.titleConnectivity-based Meta-Bands: A new approach for automatic frequency band identification in connectivity analyseses
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The Authorses
dc.identifier.doi10.1016/j.neuroimage.2023.120332es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1053811923004834?via%3Dihubes
dc.identifier.publicationfirstpage120332es
dc.identifier.publicationtitleNeuroImagees
dc.identifier.publicationvolume280es
dc.peerreviewedSIes
dc.description.projectP. Núñez fue financiado por el proyecto ERA-Net FLAG-ERA JTC2021es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco32 Ciencias Médicases
dc.subject.unesco3205.07 Neurologíaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem