Mostrar el registro sencillo del ítem

dc.contributor.authorDiez, Francisco Javier
dc.contributor.authorBoukharta, Ouiam Fatiha
dc.contributor.authorNavas Gracia, Luis Manuel 
dc.contributor.authorChico Santamarta, Leticia
dc.contributor.authorMartínez Rodríguez, Andrés 
dc.contributor.authorCorrea Guimaraes, Adriana 
dc.date.accessioned2023-09-14T11:16:09Z
dc.date.available2023-09-14T11:16:09Z
dc.date.issued2022
dc.identifier.citationSensors, 2022, Vol. 22, Nº. 20, 7772es
dc.identifier.issn1424-8220es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/61575
dc.descriptionProducción Científicaes
dc.description.abstractIn this article, the interpolation of daily data of global solar irradiation, and the maximum, average, and minimum temperatures were measured. These measurements were carried out in the agrometeorological stations belonging to the Agro-climatic Information System for Irrigation (SIAR, in Spanish) of the Region of Castilla and León, in Spain, through the concept of Virtual Weather Station (VWS), which is implemented with Artificial Neural Networks (ANNs). This is serving to estimate data in every point of the territory, according to their geographic coordinates (i.e., longitude and latitude). The ANNs of the Multilayer Feed-Forward Perceptron (MLP) used are daily trained, along with data recorded in 53 agro-meteorological stations, and where the validation of the results is conducted in the station of Tordesillas (Valladolid). The ANN models for daily interpolation were tested with one, two, three, and four neurons in the hidden layer, over a period of 15 days (from 1 to 15 June 2020), with a root mean square error (RMSE, MJ/m2) of 1.23, 1.38, 1.31, and 1.04, respectively, regarding the daily global solar irradiation. The interpolation of ambient temperature also performed well when applying the VWS concept, with an RMSE (°C) of 0.68 for the maximum temperature with an ANN of four hidden neurons, 0.58 for the average temperature with three hidden neurons, and 0.83 for the minimum temperature with four hidden neurons.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSolar radiationes
dc.subjectRadiación solares
dc.subjectTemperature measurementses
dc.subjectMeteorologyes
dc.subjectMeteorology, Agriculturales
dc.subjectEvapotranspirationes
dc.subjectEvaporación (Meteorología) - Españaes
dc.subjectClimatologyes
dc.subjectArtificial intelligencees
dc.subjectRedes neuronales (Informática)es
dc.subjectSpatial analysis (Statistics)es
dc.subjectAnálisis espacial (Estadística)es
dc.titleDaily estimation of global solar irradiation and temperatures using artificial neural networks through the virtual weather station concept in Castilla and León, Spaines
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Authorses
dc.identifier.doi10.3390/s22207772es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/22/20/7772es
dc.identifier.publicationfirstpage7772es
dc.identifier.publicationissue20es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume22es
dc.peerreviewedSIes
dc.identifier.essn1424-8220es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco2509 Meteorologíaes
dc.subject.unesco2509.01 Meteorología agrícolaes
dc.subject.unesco2502 Climatologíaes
dc.subject.unesco1203.04 Inteligencia Artificiales


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem