Mostrar el registro sencillo del ítem
dc.contributor.author | Diez, Francisco Javier | |
dc.contributor.author | Boukharta, Ouiam Fatiha | |
dc.contributor.author | Navas Gracia, Luis Manuel | |
dc.contributor.author | Chico Santamarta, Leticia | |
dc.contributor.author | Martínez Rodríguez, Andrés | |
dc.contributor.author | Correa Guimaraes, Adriana | |
dc.date.accessioned | 2023-09-14T11:16:09Z | |
dc.date.available | 2023-09-14T11:16:09Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Sensors, 2022, Vol. 22, Nº. 20, 7772 | es |
dc.identifier.issn | 1424-8220 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/61575 | |
dc.description | Producción Científica | es |
dc.description.abstract | In this article, the interpolation of daily data of global solar irradiation, and the maximum, average, and minimum temperatures were measured. These measurements were carried out in the agrometeorological stations belonging to the Agro-climatic Information System for Irrigation (SIAR, in Spanish) of the Region of Castilla and León, in Spain, through the concept of Virtual Weather Station (VWS), which is implemented with Artificial Neural Networks (ANNs). This is serving to estimate data in every point of the territory, according to their geographic coordinates (i.e., longitude and latitude). The ANNs of the Multilayer Feed-Forward Perceptron (MLP) used are daily trained, along with data recorded in 53 agro-meteorological stations, and where the validation of the results is conducted in the station of Tordesillas (Valladolid). The ANN models for daily interpolation were tested with one, two, three, and four neurons in the hidden layer, over a period of 15 days (from 1 to 15 June 2020), with a root mean square error (RMSE, MJ/m2) of 1.23, 1.38, 1.31, and 1.04, respectively, regarding the daily global solar irradiation. The interpolation of ambient temperature also performed well when applying the VWS concept, with an RMSE (°C) of 0.68 for the maximum temperature with an ANN of four hidden neurons, 0.58 for the average temperature with three hidden neurons, and 0.83 for the minimum temperature with four hidden neurons. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Solar radiation | es |
dc.subject | Radiación solar | es |
dc.subject | Temperature measurements | es |
dc.subject | Meteorology | es |
dc.subject | Meteorology, Agricultural | es |
dc.subject | Evapotranspiration | es |
dc.subject | Evaporación (Meteorología) - España | es |
dc.subject | Climatology | es |
dc.subject | Artificial intelligence | es |
dc.subject | Redes neuronales (Informática) | es |
dc.subject | Spatial analysis (Statistics) | es |
dc.subject | Análisis espacial (Estadística) | es |
dc.title | Daily estimation of global solar irradiation and temperatures using artificial neural networks through the virtual weather station concept in Castilla and León, Spain | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2022 The Authors | es |
dc.identifier.doi | 10.3390/s22207772 | es |
dc.relation.publisherversion | https://www.mdpi.com/1424-8220/22/20/7772 | es |
dc.identifier.publicationfirstpage | 7772 | es |
dc.identifier.publicationissue | 20 | es |
dc.identifier.publicationtitle | Sensors | es |
dc.identifier.publicationvolume | 22 | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 1424-8220 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 2509 Meteorología | es |
dc.subject.unesco | 2509.01 Meteorología agrícola | es |
dc.subject.unesco | 2502 Climatología | es |
dc.subject.unesco | 1203.04 Inteligencia Artificial | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional