• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Parcourir

    Tout UVaDOCCommunautésPar date de publicationAuteursSujetsTitres

    Mon compte

    Ouvrir une session

    Statistiques

    Statistiques d'usage de visualisation

    Compartir

    Voir le document 
    •   Accueil de UVaDOC
    • PROJET DE FIN D'ÉTUDES
    • Trabajos Fin de Grado UVa
    • Voir le document
    •   Accueil de UVaDOC
    • PROJET DE FIN D'ÉTUDES
    • Trabajos Fin de Grado UVa
    • Voir le document
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62117

    Título
    Reconocimiento de Emociones a partir de la Actividad Eléctrica Cerebral con Técnicas de Deep Learning.
    Autor
    Zamora García, Ruth
    Director o Tutor
    Pérez Velasco, SergioAutoridad UVA
    Hornero Sánchez, RobertoAutoridad UVA
    Editor
    Universidad de Valladolid. Facultad de MedicinaAutoridad UVA
    Año del Documento
    2023
    Titulación
    Grado en Ingeniería Biomédica
    Résumé
    Este Trabajo de Fin de Grado (TFG) se centra en el desarrollo y aplicación de técnicas de deep learning para el reconocimiento de emociones a partir de la actividad eléctrica cerebral (EEG). Se parte de la premisa de que el EEG es una valiosa fuente de información capaz de revelar los estados emocionales de un individuo. Esta investigación se enfoca en abordar el problema de detectar emociones a partir de datos EEG, lo cual tiene una relevancia significativa en áreas como Brain Computer Interface (BCI), la salud mental y la neurociencia afectiva. A lo largo de este estudio, se ha utilizado la red neuronal profunda EEG-Inception, para analizar y clasificar patrones específicos en las señales EEG asociados con diferentes estados emocionales. Estas señales EEG fueron extraídas de la base de datos SEED, y su contenido permitió llevar a cabo una clasificación multiclase que incluye la identificación de las siguientes emociones triste, neutra y feliz, así como una clasificación binaria destinada a distinguir entre los estados emocionales de felicidad y tristeza. Los resultados obtenidos han sido notables. En la clasificación multiclase se ha alcanzado una precisión del 51,58%, mientras que, en la clasificación binaria se ha obtenido una mejora significativa alcanzando un 77,49% de precisión. Este tipo de investigaciones se enfrenta a desafíos debido a las diferencias entre sujetos y a la dificultad del modelo para generalizar patrones entre ellos. Sin embargo, los resultados obtenidos indican un enfoque prometedor y sugieren oportunidades de mejora en este campo de estudio. En conclusión, este TFG representa un avance significativo en el campo del reconocimiento de emociones a partir de señales EEG utilizando técnicas de DL. A pesar de los desafíos presentes, los resultados obtenidos proporcionan una base sólida para futuras investigaciones y mejoras en la detección de emociones a partir de señales biomédicas. Este trabajo no solo amplía nuestro conocimiento sobre la relación entre la actividad cerebral y las emociones, sino que también abre la puerta a una serie de aplicaciones prácticas que pueden tener un impacto positivo en la sociedad en general.
    Materias (normalizadas)
    Emociones
    Palabras Clave
    Electroencefalograma
    Emociones
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/62117
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Grado UVa [30838]
    Afficher la notice complète
    Fichier(s) constituant ce document
    Nombre:
    TFG-M-IG3134.pdf
    Tamaño:
    1.927Mo
    Formato:
    Adobe PDF
    Thumbnail
    Voir/Ouvrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExcepté là où spécifié autrement, la license de ce document est décrite en tant que Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10