Mostrar el registro sencillo del ítem

dc.contributor.authorMasip-Bruin, Xavi
dc.contributor.authorHortelano Haro, Diego
dc.contributor.authorMiguel Jiménez, Ignacio de 
dc.contributor.authorDurán Barroso, Ramón José 
dc.contributor.authorAguado Manzano, Juan Carlos 
dc.contributor.authorMerayo Álvarez, Noemí 
dc.contributor.authorRuiz Pérez, Lidia 
dc.contributor.authorAsensio, Adrián
dc.contributor.authorFernández Reguero, Patricia 
dc.contributor.authorLorenzo Toledo, Rubén Mateo 
dc.contributor.authorAbril Domingo, Evaristo José 
dc.date.accessioned2023-10-20T12:01:40Z
dc.date.available2023-10-20T12:01:40Z
dc.date.issued2023
dc.identifier.citationJournal of Network and Computer Applications, vol. 216, July 2023, 103669 (artículo de 35 páginas)es
dc.identifier.issn1084-8045es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/62165
dc.descriptionProducción Científicaes
dc.description.abstractIn recent years, the number of embedded computing devices connected to the Internet has exponentially increased. At the same time, new applications are becoming more complex and computationally demanding, which can be a problem for devices, especially when they are battery powered. In this context, the concepts of computation offloading and edge computing, which allow applications to be fully or partially offloaded and executed on servers close to the devices in the network, have arisen and received increasing attention. Then, the design of algorithms to make the decision of which applications or tasks should be offloaded, and where to execute them, is crucial. One of the options that has been gaining momentum lately is the use of Reinforcement Learning (RL) and, in particular, Deep Reinforcement Learning (DRL), which enables learning optimal or near-optimal offloading policies adapted to each particular scenario. Although the use of RL techniques to solve the computation offloading problem in edge systems has been covered by some surveys, it has been done in a limited way. For example, some surveys have analysed the use of RL to solve various networking problems, with computation offloading being one of them, but not the primary focus. Other surveys, on the other hand, have reviewed techniques to solve the computation offloading problem, being RL just one of the approaches considered. To the best of our knowledge, this is the first survey that specifically focuses on the use of RL and DRL techniques for computation offloading in edge computing system. We present a comprehensive and detailed survey, where we analyse and classify the research papers in terms of use cases, network and edge computing architectures, objectives, RL algorithms, decision-making approaches, and time-varying characteristics considered in the analysed scenarios. In particular, we include a series of tables to help researchers identify relevant papers based on specific features, and analyse which scenarios and techniques are most frequently considered in the literature. Finally, this survey identifies a number of research challenges, future directions and areas for further study.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherElsevieres
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationComputation offloadinges
dc.subject.classificationEdge computinges
dc.subject.classificationMECes
dc.subject.classificationMulti-Access Edge Computinges
dc.subject.classificationReinforcement Learninges
dc.subject.classificationDeep Reinforcement Learninges
dc.titleA comprehensive survey on reinforcement-learning-based computation offloading techniques in Edge Computing Systemses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1016/j.jnca.2023.103669es
dc.relation.publisherversionhttps://www.sciencedirect.com/science/article/pii/S1084804523000887es
dc.identifier.publicationfirstpage103669es
dc.identifier.publicationtitleJournal of Network and Computer Applicationses
dc.identifier.publicationvolume216es
dc.peerreviewedSIes
dc.description.projectConsejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)es
dc.description.projectMinisterio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42, PID2021-124463OBI00 y RED2018-102585-T, financiados por MCIN/AEI/10.13039/501100011033)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unescoes
dc.subject.unesco3304.06 Arquitectura de Ordenadoreses


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem