• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62165

    Título
    A comprehensive survey on reinforcement-learning-based computation offloading techniques in Edge Computing Systems
    Autor
    Masip-Bruin, Xavi
    Hortelano Haro, DiegoAutoridad UVA
    Miguel Jiménez, Ignacio deAutoridad UVA Orcid
    Durán Barroso, Ramón JoséAutoridad UVA Orcid
    Aguado Manzano, Juan CarlosAutoridad UVA Orcid
    Merayo Álvarez, NoemíAutoridad UVA Orcid
    Ruiz Pérez, LidiaAutoridad UVA Orcid
    Asensio, Adrián
    Fernández Reguero, PatriciaAutoridad UVA Orcid
    Lorenzo Toledo, Rubén MateoAutoridad UVA Orcid
    Abril Domingo, Evaristo JoséAutoridad UVA Orcid
    Año del Documento
    2023
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Journal of Network and Computer Applications, vol. 216, July 2023, 103669 (artículo de 35 páginas)
    Resumen
    In recent years, the number of embedded computing devices connected to the Internet has exponentially increased. At the same time, new applications are becoming more complex and computationally demanding, which can be a problem for devices, especially when they are battery powered. In this context, the concepts of computation offloading and edge computing, which allow applications to be fully or partially offloaded and executed on servers close to the devices in the network, have arisen and received increasing attention. Then, the design of algorithms to make the decision of which applications or tasks should be offloaded, and where to execute them, is crucial. One of the options that has been gaining momentum lately is the use of Reinforcement Learning (RL) and, in particular, Deep Reinforcement Learning (DRL), which enables learning optimal or near-optimal offloading policies adapted to each particular scenario. Although the use of RL techniques to solve the computation offloading problem in edge systems has been covered by some surveys, it has been done in a limited way. For example, some surveys have analysed the use of RL to solve various networking problems, with computation offloading being one of them, but not the primary focus. Other surveys, on the other hand, have reviewed techniques to solve the computation offloading problem, being RL just one of the approaches considered. To the best of our knowledge, this is the first survey that specifically focuses on the use of RL and DRL techniques for computation offloading in edge computing system. We present a comprehensive and detailed survey, where we analyse and classify the research papers in terms of use cases, network and edge computing architectures, objectives, RL algorithms, decision-making approaches, and time-varying characteristics considered in the analysed scenarios. In particular, we include a series of tables to help researchers identify relevant papers based on specific features, and analyse which scenarios and techniques are most frequently considered in the literature. Finally, this survey identifies a number of research challenges, future directions and areas for further study.
    Materias Unesco
    3304.06 Arquitectura de Ordenadores
    Palabras Clave
    Computation offloading
    Edge computing
    MEC
    Multi-Access Edge Computing
    Reinforcement Learning
    Deep Reinforcement Learning
    ISSN
    1084-8045
    Revisión por pares
    SI
    DOI
    10.1016/j.jnca.2023.103669
    Patrocinador
    Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)
    Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42, PID2021-124463OBI00 y RED2018-102585-T, financiados por MCIN/AEI/10.13039/501100011033)
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S1084804523000887
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/62165
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    dhortelano_A_comprehensive_survey_on_reinforcement-learning.pdf
    Tamaño:
    2.445Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10