Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62299
Título
5G Radio Resource Allocation for Communication and Computation Offloading
Autor
Congreso
2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit)
Año del Documento
2023
Editorial
Institute of Electrical and Electronics Engineers (IEEE)
Descripción Física
6 p.
Descripción
Producción Científica
Documento Fuente
2023 Joint European Conference on Networks and Communications & 6G Summit (EuCNC/6G Summit), Gothenburg, Sweden, 2023, pp. 1-6
Abstract
Edge computing is envisioned as a key enabler in future cellular networks by bringing the computing, networking and storage resources closer to the end users and enabling offloading for computation-intensive or latency-critical tasks coming from the emerging 5G/6G applications. Such technology also introduces additional challenges when it comes to deciding when to offload or not since the dynamic wireless environment plays a significant role in the overall communication and computation costs when offloading workload to the nearby edge nodes. In this paper, we focus on the communication cost in computation offloading via wireless channels, by formulating an α -fair utility-based radio resource allocation (RRA) problem tailored for offloading in a multi-user urban scenario where the uplink connection is the main focus. We begin by modeling the wireless channel with large- and small-scale fading at both lower and millimetre-wave frequencies, followed by data rate calculation based on 3GPP for a more realistic approach. Then, while assessing the fairness of the RRA, we simulate the resource allocation framework while taking into account both users who need to offload and users who are only interested in high downlink data rates. Simulation results show that the weighted proportional fairness method adapted for computation offloading can provide a good trade-off between fairness and performance compared to other benchmark schemes.
Palabras Clave
Wireless communication
Costs
5G mobile communication
Computational modeling
Simulation
Data models
Resource management
Patrocinador
EU H202 MSCA ITN-ETN IoTalentum (grant no. 953442)
Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)
Consejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)
Version del Editor
Idioma
eng
Tipo de versión
info:eu-repo/semantics/acceptedVersion
Derechos
openAccess
Collections
Files in this item
Except where otherwise noted, this item's license is described as Attribution-NonCommercial-NoDerivatives 4.0 Internacional