Mostrar el registro sencillo del ítem

dc.contributor.authorKanwal Janjua, Hafiza
dc.contributor.authorMiguel Jiménez, Ignacio de 
dc.contributor.authorDurán Barroso, Ramón José 
dc.contributor.authorGonzález de Dios, Óscar
dc.contributor.authorAguado Manzano, Juan Carlos 
dc.contributor.authorMerayo Álvarez, Noemí 
dc.contributor.authorFernández Reguero, Patricia 
dc.contributor.authorLorenzo Toledo, Rubén Mateo 
dc.date.accessioned2023-10-25T12:35:00Z
dc.date.available2023-10-25T12:35:00Z
dc.date.issued2023
dc.identifier.citation2023 26th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN), Paris, France, 2023, pp. 100-104es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/62320
dc.description.abstractNetwork Slicing (NS) is a key enabler of the 5G network ecosystem due to its potential to provide distinct services over the same physical infrastructure. However, the necessity to optimally orchestrate resources for heterogeneous demands is crucial when dealing with resource constraints and Quality-of-Service (QoS) requirements. We consider a radio access network scenario providing NS over multiple base stations (BS) with limited resources, and we design an efficient resource orchestration technique, based on reinforcement learning, which optimizes resource utilization among different services while satisfying the constraints and complying with Service Level Agreement (SLA) and QoS requirements. The proposed technique makes use of the Trust Region Method to formulate the orchestration objective function and satisfy the constraints and is then optimized via Kronecker Factored Approximate Curvature (K-FAC). Extensive simulations demonstrate that the proposed technique outperforms other Reinforcement Learning (RL) algorithms, reaching 99% of QoS and SLA satisfaction while assuring bandwidth constraints.es
dc.format.extent4 p.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)es
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/*
dc.subject.classificationNetwork Slicinges
dc.subject.classificationResource Orchestrationes
dc.subject.classificationReinforcement Learninges
dc.subject.classificationConstrained Optimizationes
dc.titleEfficient Optimization of Actor-Critic Learning for Constrained Resource Orchestration in RAN with Network Slicinges
dc.typeinfo:eu-repo/semantics/conferenceObjectes
dc.identifier.doi10.1109/ICIN56760.2023.10073489es
dc.relation.publisherversionhttps://ieeexplore.ieee.org/document/10073489es
dc.title.event2023 26th Conference on Innovation in Clouds, Internet and Networks and Workshops (ICIN)es
dc.description.projectEU H2020 MSCA ITN-ETN IoTalentum (grant no. 953442)es
dc.description.projectConsejería de Educación de la Junta de Castilla y León y FEDER (VA231P20)es
dc.description.projectMinisterio de Ciencia e Innovación y Agencia Estatal de Investigación (Proyecto PID2020-112675RB-C42 financiado por MCIN/AEI/10.13039/501100011033)es
dc.rightsAttribution-NonCommercial-NoDerivatives 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem