• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Matemática Aplicada
    • DEP51 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62416

    Título
    Spectral discretizations analysis with time strong stability preserving properties for pseudo-parabolic models
    Autor
    Abreu, Eduardo
    Durán Martín, ÁngelAutoridad UVA Orcid
    Año del Documento
    2021
    Editorial
    Elsevier Science
    Descripción
    Producción Científica
    Documento Fuente
    Computers and Mathematics with Applications, 2021, 102, pp. 15-44
    Resumo
    In this work, we study the numerical approximation of the initial-boundary-value problem of nonlinear pseudo-parabolic equations with Dirichlet boundary conditions. We propose a discretization in space with spectral schemes based on Jacobi polynomials and in time with robust schemes attending to qualitative features such as stiffness and preservation of strong stability for a more correct simulation of non-regular data. Error estimates for the corresponding semidiscrete Galerkin and collocation schemes are derived. The performance of the fully discrete methods is analyzed in a computational study.
    Palabras Clave
    Pseudo-parabolic equations
    Spectral methods
    Error estimates
    Strong stability preserving methods
    Non-regular data
    ISSN
    0898-1221
    Revisión por pares
    SI
    DOI
    10.1016/j.camwa.2021.10.001
    Patrocinador
    VA193P20 Junta de Castilla y León
    PID2020-113554GB-I00/AEI/10.13039/501100011033 Ministerio de Ciencia e Innovación
    Version del Editor
    https://doi.org/10.1016/j.camwa.2021.10.001
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/62416
    Tipo de versión
    info:eu-repo/semantics/acceptedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP51 - Artículos de revista [145]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    2021CAMWA.pdf
    Tamaño:
    2.271Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10