Mostrar el registro sencillo del ítem

dc.contributor.authorRomero Ramirez, Luis Alejandro
dc.contributor.authorElvira Ortiz, David Alejandro
dc.contributor.authorRomero Troncoso, René de Jesús
dc.contributor.authorOsornio Ríos, Roque A.
dc.contributor.authorZorita Lamadrid, Ángel Luis 
dc.contributor.authorGonzález González, Sergio Lorenzo
dc.contributor.authorMoríñigo Sotelo, Daniel 
dc.date.accessioned2023-10-30T09:28:28Z
dc.date.available2023-10-30T09:28:28Z
dc.date.issued2022
dc.identifier.citationEnergies, 2022, Vol. 15, Nº. 7, 2373es
dc.identifier.issn1996-1073es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/62467
dc.descriptionProducción Científicaes
dc.description.abstractThe increasing use of nonlinear loads in the power grid introduces some unwanted effects, such as harmonic and interharmonic contamination. Since the existence of spectral contamination causes waveform distortion that may be harmful to the loads that are connected to the grid, it is important to identify the frequency components that are related to specific loads in order to determine how relevant their contribution is to the waveform distortion levels. Due to the diversity of frequency components that are merged in an electrical signal, it is a challenging task to discriminate the relevant frequencies from those that are not. Therefore, it is necessary to develop techniques that allow performing this selection in an efficient way. This paper proposes the use of spectral kurtosis for the identification of stationary frequency components in electrical signals along the day in a sustainable building. Then, the behavior of the identified frequencies is analyzed to determine which of the loads connected to the grid are introducing them. Experimentation is performed in a sustainable building where, besides the loads associated with the normal operation of the building, there are several power electronics equipment that is used for the electric generation process from renewable sources. Results prove that using the proposed methodology it is possible to detect the behavior of specific loads, such as office equipment and air conditioning.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectSignal processing - Digital techniqueses
dc.subjectTratamiento de señal - Técnicas numéricases
dc.subjectSustainable buildingses
dc.subjectUrbanismo - Aspecto del medio ambientees
dc.subjectRenewable energy resourceses
dc.subjectEnergías renovables - Aspecto del medio ambientees
dc.subjectEdificios sostenibleses
dc.subjectArquitectura sosteniblees
dc.subjectTotal harmonic distortiones
dc.subjectSpectrum analysis - Statistical methodses
dc.subjectAnálisis espectral - Métodos estadísticoses
dc.subjectSpectral kurtosises
dc.titleSpectral kurtosis based methodology for the identification of stationary load signatures in electrical signals from a sustainable buildinges
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Authorses
dc.identifier.doi10.3390/en15072373es
dc.relation.publisherversionhttps://www.mdpi.com/1996-1073/15/7/2373es
dc.identifier.publicationfirstpage2373es
dc.identifier.publicationissue7es
dc.identifier.publicationtitleEnergieses
dc.identifier.publicationvolume15es
dc.peerreviewedSIes
dc.description.projectUniversidad de Valladolid y Consejo Mexicano de Ciencia y Tecnología (CONACYT) - (grant 743842)es
dc.description.projectUniversidad Autónoma de Querétaro, Fondo para el Desarrollo del Conocimiento (FONDEC-UAQ 2020) - (project FIN202011)es
dc.identifier.essn1996-1073es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco6201.03 Urbanismoes
dc.subject.unesco3306 Ingeniería y Tecnología Eléctricases
dc.subject.unesco3308 Ingeniería y Tecnología del Medio Ambientees


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem