Mostrar el registro sencillo del ítem

dc.contributor.authorGóngora Alonso, Susel 
dc.contributor.authorMarques, Gonçalo
dc.contributor.authorAgarwal, Deevyankar
dc.contributor.authorTorre Díez, Isabel de la 
dc.contributor.authorFranco Martín, Manuel Ángel
dc.date.accessioned2023-10-30T12:19:15Z
dc.date.available2023-10-30T12:19:15Z
dc.date.issued2022
dc.identifier.citationSensors, 2022, Vol. 22, Nº. 7, 2517es
dc.identifier.issn1424-8220es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/62482
dc.descriptionProducción Científicaes
dc.description.abstractNew computational methods have emerged through science and technology to support the diagnosis of mental health disorders. Predictive models developed from machine learning algorithms can identify disorders such as schizophrenia and support clinical decision making. This research aims to compare the performance of machine learning algorithms: Decision Tree, AdaBoost, Random Forest, Naïve Bayes, Support Vector Machine, and k-Nearest Neighbor in the prediction of hospitalized patients with schizophrenia. The data set used in the study contains a total of 11,884 electronic admission records corresponding to 6933 patients with various mental health disorders; these records belong to the acute units of 11 public hospitals in a region of Spain. Of the total, 5968 records correspond to patients diagnosed with schizophrenia (3002 patients) and 5916 records correspond to patients with other mental health disorders (3931 patients). The results recommend Random Forest with the best accuracy of 72.7%. Furthermore, this algorithm presents 79.6%, 72.8%, 72.7%, and 72.7% for AUC, precision, F1-Score, and recall, respectively. The results obtained suggest that the use of machine learning algorithms can classify hospitalized patients with schizophrenia in this population and help in the hospital management of this type of disorder, to reduce the costs associated with hospitalization.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMedical carees
dc.subjectAtención médicaes
dc.subjectHospitalizationes
dc.subjectSchizophreniaes
dc.subjectPsychiatric hospitals - Sociological aspectses
dc.subjectSchizophrenia - Treatment - Social aspectses
dc.subjectEsquizofrenia - Pacientes - Cuidados en hospitaleses
dc.subjectPsychiatric hospital carees
dc.subjectAtención hospitalaria psiquiátricaes
dc.subjectClinical psychologyes
dc.subjectPsicología clínicaes
dc.subjectPsychologyes
dc.subjectMachine learninges
dc.subjectAprendizaje automáticoes
dc.subjectArtificial intelligencees
dc.subjectPredictive modeles
dc.subjectRandom forestes
dc.subjectAlgorithmses
dc.subjectAlgoritmoses
dc.titleComparison of machine learning algorithms in the prediction of hospitalized patients with schizophreniaes
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2022 The Authorses
dc.identifier.doi10.3390/s22072517es
dc.relation.publisherversionhttps://www.mdpi.com/1424-8220/22/7/2517es
dc.identifier.publicationfirstpage2517es
dc.identifier.publicationissue7es
dc.identifier.publicationtitleSensorses
dc.identifier.publicationvolume22es
dc.peerreviewedSIes
dc.description.projectJunta de Castilla y León, Gerencia Regional de Salud - (grant GRS 1801/A/18)es
dc.identifier.essn1424-8220es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco61 Psicologíaes
dc.subject.unesco3211 Psiquiatríaes
dc.subject.unesco1203.04 Inteligencia Artificiales


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem