Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62571
Título
Integration of economic MPC and modifier adaptation in slow dynamic processes with structural model uncertainty
Autor
Director o Tutor
Año del Documento
2023
Titulación
Doctorado en Ingeniería Industrial
Resumen
Real-Time Optimization, known by its acronym RTO, uses a steady-state nonlinear model of the process to optimize a plant's economic objective subject to process constraints. This is the technology currently used in commercial RTO applications. However, no model is a perfect representation of reality, and structural and parametric model uncertainties make the optimum calculated by RTO do not match those of the actual process. One way to address this problem is to modify the optimization problem so that the Necessary Conditions of Optimality (NCO) of the problem match those of the actual plant. This strategy is known as Modifier Adaptation (MA) methodology.
The MA methodology requires the gradient values of the real plant and the model to calculate the modifiers. There are several ways to accurately estimate model gradients, but estimation of the real process gradients are more difficult. In addition, the need to use stationary data is a limitation of RTO with MA, especially for slow dynamic systems.
This thesis focuses on ways to mitigate the weaknesses of RTO and MA unification that we consider most critical for its application in industry. To this end, it is proposed to couple the RTO and control layers with the concepts of the Modifier Adaptation (MA) methodology by estimating process gradients or directly the MA modifiers using transient data. La Optimización en Tiempo Real, conocida por la sigla en inglés RTO usa un modelo no lineal estacionario del proceso para optimizar un objetivo económico de la planta frente a restricciones del proceso. Esta es la tecnología usada actualmente por las aplicaciones comerciales de RTO. Sin embargo, ningún modelo es una representación perfecta de la realidad y las incertidumbres estructurales y paramétricas de los modelos hacen que los óptimos calculados por la RTO no coincidan con los del proceso real. Una forma de abordar este problema es modificar el problema de optimización de modo que las condiciones necesarias de optimalidad del problema (NCO) se igualen a los de la planta real. Esa estrategia es conocida como la metodología de adaptación de modificadores (Modifier Adaptation, MA).
La metodología MA necesita de los valores de gradiente de la planta real y del modelo para el cálculo de los modificadores. Hay diversas formas de estimar los gradientes del modelo con exactitud, sin embargo, la estimación en proceso real es más difícil. Además, la necesidad de usar datos en estacionario sigue siendo una limitación fundamental de la RTO con MA, principalmente para sistemas dinámicos lentos.
Esta tesis se enfoca en formas de mitigar las debilidades de la unificación RTO y MA que consideramos las más críticas para su aplicación en la industria. Para eso se propone que las capas de RTO y control se unan con los conceptos de la metodología de adaptación de modificadores (Modifier Adaptation, MA) estimando los gradientes de proceso o directamente los modificadores de MA usando datos de transitorio.
Materias (normalizadas)
Automatización
Materias Unesco
33 Ciencias Tecnológicas
Palabras Clave
RTO
MPC
Uncertainty
Incertidumbre
Departamento
Escuela de Doctorado
Idioma
eng
Tipo de versión
info:eu-repo/semantics/publishedVersion
Derechos
openAccess
Aparece en las colecciones
- Tesis doctorales UVa [2328]
Ficheros en el ítem
La licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 International