• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Ricerca

    Tutto UVaDOCArchiviData di pubblicazioneAutoriSoggettiTitoli

    My Account

    Login

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Mostra Item 
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Mostra Item
    •   UVaDOC Home
    • PRODUZIONE SCIENTIFICA
    • Departamentos
    • Dpto. Ingeniería de Sistemas y Automática
    • DEP44 - Artículos de revista
    • Mostra Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/62610

    Título
    Discovering stop and parking behaviors of last mile delivery vehicles for urban areas based on not well conditioned GPS traces, expert knowledge and machine learning
    Autor
    Galende Hernández, MartaAutoridad UVA Orcid
    Sáinz Palmero, Gregorio IsmaelAutoridad UVA Orcid
    Fuente Aparicio, María Jesús de laAutoridad UVA Orcid
    Año del Documento
    2024
    Editorial
    Elsevier
    Descripción
    Producción Científica
    Documento Fuente
    Expert Systems with Applications, 2024, vol. 238, Part C, 122001
    Abstract
    Nowadays urban traffic is one of the most serious challenges for local authorities around the world. This challenge implies issues regarding health, energy, safety, environment and quality of life. Achieving a fair traffic outcome is a key priority for city traffic managers while maintaining city’s attractiveness for citizens and travelers and those carrying out commercial activities. As a part of this challenge, delivery and similar companies are relevant stakeholders in optimizing their routes, deliveries, and operational services. It is in this respect that urban traffic and its regulations play a key role. The conditions in which urban traffic takes place thus have to be known and one way to deal with this is based on available and accessible data. In the IoT age, there could be huge amounts of available data generated by countless sensors and systems involved in our lives, cities, infrastructures, etc.... Taking advantage of such data, when the accessibility and quality is good enough, can help us to achieve the desired goals concerning the urban traffic and its consequences. However, in practice, the availability and access to such data is currently a very serious challenge. Following on with this, data generated from the ever-increasing number of sensors on board vehicles could be very useful, not only for checking the vehicle condition, but also to gain a better of the “real-time” traffic situation or to discover traffic behaviors/patterns from the said data. In this work, a real case based study has been carried out gathering basic real GPS information regarding delivery vehicles in a city environment and OpenData to “discover” where, when and how long time delivery vehicles use the regulated parking zones for loading/unloading in the city center. Based on Expert Rules, a stop detection criteria is defined and formulated to be applied to real cases in urban areas, focusing on city centers and Machine Learning techniques to discover stop and park behaviors on last mile deliveries in a real urban area. All this is used to plan traffic strategies and facilities which can permit better and more fluent services. On the other hand, the results provide invaluable knowledge support for the expert knowledge of mobility managers, while also supplying new “findings” about the daily challenges, showing that machine learning techniques and other linked technologies are powerful tools for this challenge.
    Materias (normalizadas)
    Urban planning
    Materias Unesco
    3317.02 Automóviles
    3329.07 Transporte
    Palabras Clave
    GPS traces
    Urban city delivery
    Park & stop behaviors
    Trazas de GPS
    Entrega en ciudad urbana
    Comportamientos de estacionamiento y parada
    ISSN
    0957-4174
    Revisión por pares
    SI
    DOI
    10.1016/j.eswa.2023.122001
    Version del Editor
    https://www.sciencedirect.com/science/article/pii/S0957417423025034?via%3Dihub
    Propietario de los Derechos
    © 2023 The Authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/62610
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP44 - Artículos de revista [78]
    Mostra tutti i dati dell'item
    Files in questo item
    Nombre:
    Discovering-stop-and-parking-behaviors.pdf
    Tamaño:
    3.459Mb
    Formato:
    Adobe PDF
    Thumbnail
    Mostra/Apri
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10