Mostrar el registro sencillo del ítem
dc.contributor.author | Fatima, Anum | |
dc.contributor.author | Shafi, Imran | |
dc.contributor.author | Afzal, Hammad | |
dc.contributor.author | Mahmood, Khawar | |
dc.contributor.author | Torre Díez, Isabel de la | |
dc.contributor.author | Lipari, Vivian | |
dc.contributor.author | Brito Ballester, Julien | |
dc.contributor.author | Ashraf, Imran | |
dc.date.accessioned | 2023-12-01T09:07:59Z | |
dc.date.available | 2023-12-01T09:07:59Z | |
dc.date.issued | 2023 | |
dc.identifier.citation | Healthcare, 2023, Vol. 11, Nº. 3, 347 | es |
dc.identifier.issn | 2227-9032 | es |
dc.identifier.uri | https://uvadoc.uva.es/handle/10324/63392 | |
dc.description | Producción Científica | es |
dc.description.abstract | Automated dental imaging interpretation is one of the most prolific areas of research using artificial intelligence. X-ray imaging systems have enabled dental clinicians to identify dental diseases. However, the manual process of dental disease assessment is tedious and error-prone when diagnosed by inexperienced dentists. Thus, researchers have employed different advanced computer vision techniques, as well as machine and deep learning models for dental disease diagnoses using X-ray imagery. In this regard, a lightweight Mask-RCNN model is proposed for periapical disease detection. The proposed model is constructed in two parts: a lightweight modified MobileNet-v2 backbone and region-based network (RPN) are proposed for periapical disease localization on a small dataset. To measure the effectiveness of the proposed model, the lightweight Mask-RCNN is evaluated on a custom annotated dataset comprising images of five different types of periapical lesions. The results reveal that the model can detect and localize periapical lesions with an overall accuracy of 94%, a mean average precision of 85%, and a mean insection over a union of 71.0%. The proposed model improves the detection, classification, and localization accuracy significantly using a smaller number of images compared to existing methods and outperforms state-of-the-art approaches. | es |
dc.format.mimetype | application/pdf | es |
dc.language.iso | eng | es |
dc.publisher | MDPI | es |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | es |
dc.rights.uri | http://creativecommons.org/licenses/by/4.0/ | * |
dc.subject | Machine learning | es |
dc.subject | Aprendizaje automático | es |
dc.subject | Artificial intelligence - Medical applications | es |
dc.subject | Inteligencia artificial - Aplicaciones médicas | es |
dc.subject | Preventive dentistry | es |
dc.subject | Dental hygiene | es |
dc.subject | Higiene dental | es |
dc.subject | Mouth - Diseases - Diagnosis | es |
dc.subject | Boca - Enfermedades - Diagnóstico | es |
dc.subject | Image processing | es |
dc.subject | Imágenes, Tratamiento de las | es |
dc.subject | Health informatics | es |
dc.subject | Dentistry | |
dc.subject | Odontología | |
dc.title | Deep learning-based multiclass instance segmentation for dental lesion detection | es |
dc.type | info:eu-repo/semantics/article | es |
dc.rights.holder | © 2023 The authors | es |
dc.identifier.doi | 10.3390/healthcare11030347 | es |
dc.relation.publisherversion | https://www.mdpi.com/2227-9032/11/3/347 | es |
dc.identifier.publicationfirstpage | 347 | es |
dc.identifier.publicationissue | 3 | es |
dc.identifier.publicationtitle | Healthcare | es |
dc.identifier.publicationvolume | 11 | es |
dc.peerreviewed | SI | es |
dc.identifier.essn | 2227-9032 | es |
dc.rights | Atribución 4.0 Internacional | * |
dc.type.hasVersion | info:eu-repo/semantics/publishedVersion | es |
dc.subject.unesco | 1203.04 Inteligencia Artificial | es |
dc.subject.unesco | 1203.17 Informática | es |
dc.subject.unesco | 3213.13 Ortodoncia-Estomatología | es |
Ficheros en el ítem
Este ítem aparece en la(s) siguiente(s) colección(ones)
La licencia del ítem se describe como Atribución 4.0 Internacional