Mostrar el registro sencillo del ítem

dc.contributor.authorFatima, Anum
dc.contributor.authorShafi, Imran
dc.contributor.authorAfzal, Hammad
dc.contributor.authorMahmood, Khawar
dc.contributor.authorTorre Díez, Isabel de la 
dc.contributor.authorLipari, Vivian
dc.contributor.authorBrito Ballester, Julien
dc.contributor.authorAshraf, Imran
dc.date.accessioned2023-12-01T09:07:59Z
dc.date.available2023-12-01T09:07:59Z
dc.date.issued2023
dc.identifier.citationHealthcare, 2023, Vol. 11, Nº. 3, 347es
dc.identifier.issn2227-9032es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/63392
dc.descriptionProducción Científicaes
dc.description.abstractAutomated dental imaging interpretation is one of the most prolific areas of research using artificial intelligence. X-ray imaging systems have enabled dental clinicians to identify dental diseases. However, the manual process of dental disease assessment is tedious and error-prone when diagnosed by inexperienced dentists. Thus, researchers have employed different advanced computer vision techniques, as well as machine and deep learning models for dental disease diagnoses using X-ray imagery. In this regard, a lightweight Mask-RCNN model is proposed for periapical disease detection. The proposed model is constructed in two parts: a lightweight modified MobileNet-v2 backbone and region-based network (RPN) are proposed for periapical disease localization on a small dataset. To measure the effectiveness of the proposed model, the lightweight Mask-RCNN is evaluated on a custom annotated dataset comprising images of five different types of periapical lesions. The results reveal that the model can detect and localize periapical lesions with an overall accuracy of 94%, a mean average precision of 85%, and a mean insection over a union of 71.0%. The proposed model improves the detection, classification, and localization accuracy significantly using a smaller number of images compared to existing methods and outperforms state-of-the-art approaches.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherMDPIes
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/*
dc.subjectMachine learninges
dc.subjectAprendizaje automáticoes
dc.subjectArtificial intelligence - Medical applicationses
dc.subjectInteligencia artificial - Aplicaciones médicases
dc.subjectPreventive dentistryes
dc.subjectDental hygienees
dc.subjectHigiene dentales
dc.subjectMouth - Diseases - Diagnosises
dc.subjectBoca - Enfermedades - Diagnósticoes
dc.subjectImage processinges
dc.subjectImágenes, Tratamiento de lases
dc.subjectHealth informaticses
dc.subjectDentistry
dc.subjectOdontología
dc.titleDeep learning-based multiclass instance segmentation for dental lesion detectiones
dc.typeinfo:eu-repo/semantics/articlees
dc.rights.holder© 2023 The authorses
dc.identifier.doi10.3390/healthcare11030347es
dc.relation.publisherversionhttps://www.mdpi.com/2227-9032/11/3/347es
dc.identifier.publicationfirstpage347es
dc.identifier.publicationissue3es
dc.identifier.publicationtitleHealthcarees
dc.identifier.publicationvolume11es
dc.peerreviewedSIes
dc.identifier.essn2227-9032es
dc.rightsAtribución 4.0 Internacional*
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones
dc.subject.unesco1203.04 Inteligencia Artificiales
dc.subject.unesco1203.17 Informáticaes
dc.subject.unesco3213.13 Ortodoncia-Estomatologíaes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem