• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • TRABAJOS FIN DE ESTUDIOS
    • Trabajos Fin de Máster UVa
    • Ver ítem
    •   UVaDOC Principal
    • TRABAJOS FIN DE ESTUDIOS
    • Trabajos Fin de Máster UVa
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/63413

    Título
    Ideales de aristas: un ejemplo de interacción entre el álgebra conmutativa y la combinatoria
    Autor
    Asensio Ferrero, Sara
    Director o Tutor
    Giménez, Philippe ThierryAutoridad UVA
    Editor
    Universidad de Valladolid. Facultad de CienciasAutoridad UVA
    Año del Documento
    2023
    Titulación
    Máster en Matemáticas
    Resumen
    El estudio de las resoluciones libres minimales graduadas de ideales monomiales es un área de trabajo clásica dentro del álgebra conmutativa. Tradicionalmente, la forma de abordar este estudio consistía en recurrir a herramientas propias del álgebra homológica. No obstante, problemas como hallar la dimensión de un grupo de homología pueden llegar a ser altamente complicados. En 1990, Shalom Eliahou y Michel Kervaire introdujeron una nueva técnica que se conoce como escisión de ideales y que permite evitarlos. En este trabajo, expondremos cómo Adam Van Tuyl y Huy Tài Hà utilizan esta técnica para construir un nuevo puente entre el álgebra conmutativa y la combinatoria. Estos autores empiezan considerando los ideales de aristas asociados a grafos, que permiten estudiar ideales monomiales cuadráticos libres de cuadrados, y más tarde presentan los hipergrafos como una generalización de los grafos que conduce al estudio de ideales monomiales libres de cuadrados no necesariamente cuadráticos.
    Palabras Clave
    Álgebra
    Combinatoria
    Escisión
    Departamento
    Departamento de Algebra, Geometría y Topología
    Idioma
    spa
    URI
    https://uvadoc.uva.es/handle/10324/63413
    Derechos
    openAccess
    Aparece en las colecciones
    • Trabajos Fin de Máster UVa [7064]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    TFM-G1849.pdf
    Tamaño:
    579.1Kb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution-NonCommercial-NoDerivatives 4.0 InternacionalLa licencia del ítem se describe como Attribution-NonCommercial-NoDerivatives 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10