• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Listar

    Todo UVaDOCComunidadesPor fecha de publicaciónAutoresMateriasTítulos

    Mi cuenta

    Acceder

    Estadísticas

    Ver Estadísticas de uso

    Compartir

    Ver ítem 
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    •   UVaDOC Principal
    • PRODUCCIÓN CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver ítem
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/63575

    Título
    SARSMutOnto: An ontology for SARS-CoV-2 lineages and mutations
    Autor
    Bakkas, Jamal
    Hanine, Mohamed
    Chekry, Abderrahman
    Gounane, Said
    Torre Díez, Isabel de laAutoridad UVA
    Lipari, Vivian
    Martínez López, Nohora Milena
    Ashraf, Imran
    Año del Documento
    2023
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Viruses, 2023, Vol. 15, Nº. 2, 505
    Resumen
    Mutations allow viruses to continuously evolve by changing their genetic code to adapt to the hosts they infect. It is an adaptive and evolutionary mechanism that helps viruses acquire characteristics favoring their survival and propagation. The COVID-19 pandemic declared by the WHO in March 2020 is caused by the SARS-CoV-2 virus. The non-stop adaptive mutations of this virus and the emergence of several variants over time with characteristics favoring their spread constitute one of the biggest obstacles that researchers face in controlling this pandemic. Understanding the mutation mechanism allows for the adoption of anticipatory measures and the proposal of strategies to control its propagation. In this study, we focus on the mutations of this virus, and we propose the SARSMutOnto ontology to model SARS-CoV-2 mutations reported by Pango researchers. A detailed description is given for each mutation. The genes where the mutations occur and the genomic structure of this virus are also included. The sub-lineages and the recombinant sub-lineages resulting from these mutations are additionally represented while maintaining their hierarchy. We developed a Python-based tool to automatically generate this ontology from various published Pango source files. At the end of this paper, we provide some examples of SPARQL queries that can be used to exploit this ontology. SARSMutOnto might become a ‘wet bench’ machine learning tool for predicting likely future mutations based on previous mutations.
    Materias (normalizadas)
    Ontology
    Human genome
    Genoma humano
    Genetics
    Genetica
    SARS-CoV-2
    Mutation (Biologie)
    Mutación (Biología)
    Virology
    Viruses
    Materias Unesco
    7203.03 Metafísica, Ontología
    2420 Virología
    2420.08 Virus Respiratorios
    32 Ciencias Médicas
    ISSN
    1999-4915
    Revisión por pares
    SI
    DOI
    10.3390/v15020505
    Version del Editor
    https://www.mdpi.com/1999-4915/15/2/505
    Propietario de los Derechos
    © 2023 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/63575
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [362]
    Mostrar el registro completo del ítem
    Ficheros en el ítem
    Nombre:
    SARSMutOnto.pdf
    Tamaño:
    1.546Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalLa licencia del ítem se describe como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10