• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/63627

    Título
    Examination of lemon bruising using different CNN-based classifiers and local spectral-spatial hyperspectral imaging
    Autor
    Pourdarbani, Razieh
    Sabzi, Sajad
    Dehghankar, Mohsen
    Rohban, Mohammad H.
    Arribas Sánchez, Juan IgnacioAutoridad UVA Orcid
    Año del Documento
    2023
    Editorial
    MDPI
    Descripción
    Producción Científica
    Documento Fuente
    Algorithms, 2023, Vol. 16, Nº. 2, 113
    Resumo
    The presence of bruises on fruits often indicates cell damage, which can lead to a decrease in the ability of the peel to keep oxygen away from the fruits, and as a result, oxygen breaks down cell walls and membranes damaging fruit content. When chemicals in the fruit are oxidized by enzymes such as polyphenol oxidase, the chemical reaction produces an undesirable and apparent brown color effect, among others. Early detection of bruising prevents low-quality fruit from entering the consumer market. Hereupon, the present paper aims at early identification of bruised lemon fruits using 3D-convolutional neural networks (3D-CNN) via a local spectral-spatial hyperspectral imaging technique, which takes into account adjacent image pixel information in both the frequency (wavelength) and spatial domains of a 3D-tensor hyperspectral image of input lemon fruits. A total of 70 sound lemons were picked up from orchards. First, all fruits were labeled and the hyperspectral images (wavelength range 400–1100 nm) were captured as belonging to the healthy (unbruised) class (class label 0). Next, bruising was applied to each lemon by freefall. Then, the hyperspectral images of all bruised samples were captured in a time gap of 8 (class label 1) and 16 h (class label 2) after bruising was induced, thus resulting in a 3-class ternary classification problem. Four well-known 3D-CNN model namely ResNet, ShuffleNet, DenseNet, and MobileNet were used to classify bruised lemons in Python. Results revealed that the highest classification accuracy (90.47%) was obtained by the ResNet model, followed by DenseNet (85.71%), ShuffleNet (80.95%) and MobileNet (73.80%); all over the test set. ResNet model had larger parameter sizes, but it was proven to be trained faster than other models with fewer number of free parameters. ShuffleNet and MobileNet were easier to train and they needed less storage, but they could not achieve a classification error as low as the other two counterparts.
    Materias (normalizadas)
    Frutas
    Cítricos
    Cítricos - Cultivo
    Citrus
    Citrus cultivation
    Citrus fruits
    Classification
    Neural networks (Computer science)
    Redes neuronales (Informática)
    Hyperspectral imaging
    Fruit
    Fruit - Quality
    Food science
    Machine learning
    Aprendizaje automático
    Artificial intelligence
    Image processing - Digital techniques
    Procesamiento de imágenes - Técnicas digitales.
    Computer mathematics
    Ordenadores - Matemáticas
    Numerical analysis
    Análisis numérico
    Materias Unesco
    1203.17 Informática
    1203.04 Inteligencia Artificial
    3102 Ingeniería Agrícola
    Palabras Clave
    Bruise
    ISSN
    1999-4893
    Revisión por pares
    SI
    DOI
    10.3390/a16020113
    Version del Editor
    https://www.mdpi.com/1999-4893/16/2/113
    Propietario de los Derechos
    © 2023 The authors
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/63627
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    Examination-of-Lemon-Bruising.pdf
    Tamaño:
    2.979Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Atribución 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Atribución 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10