• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Navegar

    Todo o repositórioComunidadesPor data do documentoAutoresAssuntosTítulos

    Minha conta

    Entrar

    Estatística

    Ver as estatísticas de uso

    Compartir

    Ver item 
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver item
    •   Página inicial
    • PRODUÇÃO CIENTÍFICA
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • Ver item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Exportar

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64370

    Título
    Groupwise Non-Rigid Registration with Deep Learning: An Affordable Solution Applied to 2D Cardiac Cine MRI Reconstruction
    Autor
    Martín González, ElenaAutoridad UVA
    Sevilla, Teresa
    Revilla Orodea, Ana
    Casaseca de la Higuera, Juan PabloAutoridad UVA Orcid
    Alberola López, CarlosAutoridad UVA Orcid
    Año del Documento
    2020
    Documento Fuente
    Martín-González, E., Sevilla, T., Revilla-Orodea, A., Casaseca-de-la-Higuera, P., & Alberola-López, C. (2020). Groupwise non-rigid registration with deep learning: an affordable solution applied to 2D cardiac cine MRI reconstruction. Entropy, 22(6), 687
    Resumo
    Groupwise image (GW) registration is customarily used for subsequent processing in medical imaging. However, it is computationally expensive due to repeated calculation of transformations and gradients. In this paper, we propose a deep learning (DL) architecture that achieves GW elastic registration of a 2D dynamic sequence on an affordable average GPU. Our solution, referred to as dGW, is a simplified version of the well-known U-net. In our GW solution, the image that the other images are registered to, referred to in the paper as template image, is iteratively obtained together with the registered images. Design and evaluation have been carried out using 2D cine cardiac MR slices from 2 databases respectively consisting of 89 and 41 subjects. The first database was used for training and validation with 66.6–33.3% split. The second one was used for validation (50%) and testing (50%). Additional network hyperparameters, which are—in essence—those that control the transformation smoothness degree, are obtained by means of a forward selection procedure. Our results show a 9-fold runtime reduction with respect to an optimization-based implementation; in addition, making use of the well-known structural similarity (SSIM) index we have obtained significative differences with dGW with respect to an alternative DL solution based on Voxelmorph.
    Revisión por pares
    SI
    DOI
    10.3390/e22060687
    Patrocinador
    Ministerio de Ciencia e Innovación for research grant TEC2017-82408-R.
    Version del Editor
    https://www.mdpi.com/1099-4300/22/6/687
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/64370
    Tipo de versión
    info:eu-repo/semantics/publishedVersion
    Derechos
    openAccess
    Aparece en las colecciones
    • DEP71 - Artículos de revista [358]
    Mostrar registro completo
    Arquivos deste item
    Nombre:
    entropy-22-00687-v2.pdf
    Tamaño:
    3.162Mb
    Formato:
    Adobe PDF
    Thumbnail
    Visualizar/Abrir
    Attribution 4.0 InternacionalExceto quando indicado o contrário, a licença deste item é descrito como Attribution 4.0 Internacional

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10