Mostrar el registro sencillo del ítem

dc.contributor.authorJarrott, L. C.
dc.contributor.authorLiedahl, D. A.
dc.contributor.authorMarley, E. V.
dc.contributor.authorKemp, G. E.
dc.contributor.authorHeeter, R. F.
dc.contributor.authorEmig, J. A.
dc.contributor.authorFoord, M. E.
dc.contributor.authorWidmann, K.
dc.contributor.authorJaquez, J.
dc.contributor.authorHuang, H.
dc.contributor.authorRose, S. J.
dc.contributor.authorWark, J. S.
dc.contributor.authorSchneider, M. B.
dc.contributor.authorPérez Callejo, Gabriel 
dc.date.accessioned2024-01-10T16:42:27Z
dc.date.available2024-01-10T16:42:27Z
dc.date.issued2019
dc.identifier.citationPhysics of Plasmas, Junio 2019, vol. 26, p. 063302es
dc.identifier.issn1070-664Xes
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/64389
dc.description.abstractUnderstanding the effects of radiative transfer in High Energy Density Physics experiments is critical for the characterization of the thermodynamic properties of highly ionized matter, in particular in Inertial Confinement Fusion (ICF). We report on non-Local Thermodynamic Equilibrium experiments on cylindrical targets carried out at the Omega Laser Facility at the Laboratory for Laser Energetics, Rochester NY, which aim to characterize these effects. In these experiments, a 50/50 mixture of iron and vanadium, with a thickness of 2000 Å and a diameter of 250 μm, is contained within a beryllium tamper, with a thickness of 10 μm and a diameter of 1000 μm. Each side of the beryllium tamper is then irradiated using 18 of the 60 Omega beams with an intensity of roughly 3 × 1014 W cm−2 per side, over a duration of 3 ns. Spectroscopic measurements show that a plasma temperature on the order of 2 keV was produced. Imaging data show that the plasma remains cylindrical, with geometrical aspect ratios (quotient between the height and the radius of the cylinder) from 0.4 to 2.0. The temperatures in this experiment were kept sufficiently low (∼1–2 keV) so that the optically thin Li-like satellite emission could be used for temperature diagnosis. This allowed for the characterization of optical-depth-dependent geometric effects in the vanadium line emission. Simulations present good agreement with the data, which allows this study to benchmark these effects in order to take them into account to deduce temperature and density in future ICF experiments, such as those performed at the National Ignition Facility.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherAmerican Institute of Physicses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleLaboratory measurements of geometrical effects in the x-ray emission of optically thick lines for ICF diagnosticses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1063/1.5096972es
dc.identifier.publicationissue6es
dc.identifier.publicationtitlePhysics of Plasmases
dc.identifier.publicationvolume26es
dc.peerreviewedSIes
dc.description.projectLLNL under Grant No. B617350. The National Nuclear Security Administration under Contract No. DE-NA0001808. Department of Energy by the Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344.
dc.identifier.essn1089-7674es
dc.type.hasVersioninfo:eu-repo/semantics/publishedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem