Mostrar el registro sencillo del ítem

dc.contributor.authorBarrios, M. A.
dc.contributor.authorLiedahl, D. A.
dc.contributor.authorSchneider, M. B.
dc.contributor.authorJones, O.
dc.contributor.authorLanden, O.
dc.contributor.authorKauffman, R. L.
dc.contributor.authorSuter, L. J.
dc.contributor.authorMoody, J. D.
dc.contributor.authorRose, S. J.
dc.contributor.authorWark, J. S.
dc.contributor.authorPérez Callejo, Gabriel 
dc.date.accessioned2024-01-10T17:39:54Z
dc.date.available2024-01-10T17:39:54Z
dc.date.issued2020
dc.identifier.citationPhysics of Plasmas, Noviembre 2020, vol. 27, p. 112714es
dc.identifier.issn1070-664Xes
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/64400
dc.descriptionProducción Científicaes
dc.description.abstractThe indirect drive approach to inertial confinement fusion has undergone important advances in the past few years. Improvements in temperature and density diagnostic methods are leading to more accurate measurements of the plasma conditions inside the Hohlraum and therefore to more efficient experimental designs. The implementation of dot spectroscopy has proven to be a versatile approach to extracting space- and time-dependent electron temperatures. In this method, a microdot of a mid-Z material is placed inside the Hohlraum and its K-shell emission spectrum is used to determine the plasma temperature. However, radiation transport of optically thick lines acting within the cylindrical dot geometry influences the outgoing spectral distribution in a manner that depends on the viewing angle. This angular dependence has recently been studied in the high energy density regime at the OMEGA laser facility, which allowed us to design and benchmark appropriate radiative transfer models that can replicate these geometric effects. By combining these models with the measurements from the dot spectroscopy experiments at the National Ignition Facility, we demonstrate here a novel technique that exploits the transport effects to obtain time-resolved measurements of the ion density of the tracer dots, without the need for additional diagnostics. We find excellent agreement between experiment and simulation, opening the possibility of using these geometric effects as a density diagnostic in future experiments.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.publisherAmerican Institute of Physicses
dc.rights.accessRightsinfo:eu-repo/semantics/openAccesses
dc.titleA novel method to measure ion density in ICF experiments using x-ray spectroscopy of cylindrical tracerses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1063/5.0012474es
dc.identifier.publicationissue11es
dc.identifier.publicationtitlePhysics of Plasmases
dc.identifier.publicationvolume27es
dc.peerreviewedSIes
dc.description.projectG.P.-C., S. J. R. and J. S. W. gratefully acknowledge support from LLNL under grant number B617350. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.
dc.identifier.essn1089-7674es
dc.type.hasVersioninfo:eu-repo/semantics/acceptedVersiones


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem