Mostrar el registro sencillo del ítem

dc.contributor.authorAmado-Caballero, Patricia
dc.contributor.authorCasaseca de la Higuera, Juan Pablo 
dc.contributor.authorAlberola López, Susana
dc.contributor.authorAndres-de-Llano, Jesus Maria
dc.contributor.authorVillalobos, Jose Antonio Lopez
dc.contributor.authorGarmendia-Leiza, Jose Ramon
dc.contributor.authorAlberola López, Carlos 
dc.date.accessioned2024-01-10T20:29:59Z
dc.date.available2024-01-10T20:29:59Z
dc.date.issued2020
dc.identifier.citationAmado-Caballero, P., Casaseca-de-la-Higuera, P., Alberola-Lopez, S., Andres-de-Llano, J. M., Villalobos, J. A. L., Garmendia-Leiza, J. R., & Alberola-Lopez, C. (2020). Objective ADHD diagnosis using convolutional neural networks over daily-life activity records. IEEE journal of biomedical and health informatics, 24(9), 2690-2700.es
dc.identifier.issn2168-2194es
dc.identifier.urihttps://uvadoc.uva.es/handle/10324/64414
dc.description.abstractAttention Deficit/Hyperactivity Disorder (ADHD) is the most common neurobehavioral disorder in children and adolescents. However, its etiology is still unknown, and this hinders the existence of reliable, fast and inexpensive standard diagnostic methods. Objective: This paper proposes an end-to-end methodology for automatic diagnosis of the combined type of ADHD. Methods: Diagnosis is based on the analysis of 24 hour-long activity records using Convolutional Neural Networks to classify spectrograms of activity windows. Results: We achieve up to 97.62% average sensitivity, 99.52% specificity and AUC values over 99%. Overall, our figures overcome those obtained by actigraphy-based methods reported in the literature as well as others based on more expensive (and not so convenient) acquisition methods. Conclusion: These results reinforce the idea that combining deep learning techniques together with actimetry can lead to a robust and efficient system for objective ADHD diagnosis. Significance: Reliance on simple activity measurements leads to an inexpensive and non-invasive objective diagnostic method, which can be easily implemented with daily devices.es
dc.format.mimetypeapplication/pdfes
dc.language.isoenges
dc.rights.accessRightsinfo:eu-repo/semantics/restrictedAccesses
dc.titleObjective ADHD Diagnosis Using Convolutional Neural Networks Over Daily-Life Activity Recordses
dc.typeinfo:eu-repo/semantics/articlees
dc.identifier.doi10.1109/JBHI.2020.2964072es
dc.identifier.publicationfirstpage2690es
dc.identifier.publicationissue9es
dc.identifier.publicationlastpage2700es
dc.identifier.publicationtitleIEEE Journal of Biomedical and Health Informaticses
dc.identifier.publicationvolume24es
dc.peerreviewedSIes
dc.identifier.essn2168-2208es
dc.type.hasVersioninfo:eu-repo/semantics/draftes


Ficheros en el ítem

Thumbnail

Este ítem aparece en la(s) siguiente(s) colección(ones)

Mostrar el registro sencillo del ítem