• español
  • English
  • français
  • Deutsch
  • português (Brasil)
  • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UVaDOCCommunitiesBy Issue DateAuthorsSubjectsTitles

    My Account

    Login

    Statistics

    View Usage Statistics

    Share

    View Item 
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    •   UVaDOC Home
    • SCIENTIFIC PRODUCTION
    • Departamentos
    • Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática
    • DEP71 - Artículos de revista
    • View Item
    • español
    • English
    • français
    • Deutsch
    • português (Brasil)
    • italiano

    Export

    RISMendeleyRefworksZotero
    • edm
    • marc
    • xoai
    • qdc
    • ore
    • ese
    • dim
    • uketd_dc
    • oai_dc
    • etdms
    • rdf
    • mods
    • mets
    • didl
    • premis

    Citas

    Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64414

    Título
    Objective ADHD Diagnosis Using Convolutional Neural Networks Over Daily-Life Activity Records
    Autor
    Amado Caballero, PatriciaAutoridad UVA
    Casaseca de la Higuera, Juan PabloAutoridad UVA Orcid
    Alberola López, Susana
    Andrés De Llano, Jesús MaríaAutoridad UVA
    López Villalobos, José Antonio
    Garmendia Leiza, José Ramón
    Alberola López, CarlosAutoridad UVA Orcid
    Año del Documento
    2020
    Documento Fuente
    Amado-Caballero, P., Casaseca-de-la-Higuera, P., Alberola-Lopez, S., Andres-de-Llano, J. M., Villalobos, J. A. L., Garmendia-Leiza, J. R., & Alberola-Lopez, C. (2020). Objective ADHD diagnosis using convolutional neural networks over daily-life activity records. IEEE journal of biomedical and health informatics, 24(9), 2690-2700.
    Abstract
    Attention Deficit/Hyperactivity Disorder (ADHD) is the most common neurobehavioral disorder in children and adolescents. However, its etiology is still unknown, and this hinders the existence of reliable, fast and inexpensive standard diagnostic methods. Objective: This paper proposes an end-to-end methodology for automatic diagnosis of the combined type of ADHD. Methods: Diagnosis is based on the analysis of 24 hour-long activity records using Convolutional Neural Networks to classify spectrograms of activity windows. Results: We achieve up to 97.62% average sensitivity, 99.52% specificity and AUC values over 99%. Overall, our figures overcome those obtained by actigraphy-based methods reported in the literature as well as others based on more expensive (and not so convenient) acquisition methods. Conclusion: These results reinforce the idea that combining deep learning techniques together with actimetry can lead to a robust and efficient system for objective ADHD diagnosis. Significance: Reliance on simple activity measurements leads to an inexpensive and non-invasive objective diagnostic method, which can be easily implemented with daily devices.
    ISSN
    2168-2194
    Revisión por pares
    SI
    DOI
    10.1109/JBHI.2020.2964072
    Idioma
    eng
    URI
    https://uvadoc.uva.es/handle/10324/64414
    Tipo de versión
    info:eu-repo/semantics/draft
    Derechos
    restrictedAccess
    Collections
    • DEP71 - Artículos de revista [358]
    Show full item record
    Files in this item
    Nombre:
    ADHD_JBHI_AMADO.pdf
    Tamaño:
    3.527Mb
    Formato:
    Adobe PDF
    Thumbnail
    FilesOpen

    Universidad de Valladolid

    Powered by MIT's. DSpace software, Version 5.10