Por favor, use este identificador para citar o enlazar este ítem:https://uvadoc.uva.es/handle/10324/64414
Título
Objective ADHD Diagnosis Using Convolutional Neural Networks Over Daily-Life Activity Records
Autor
Año del Documento
2020
Documento Fuente
Amado-Caballero, P., Casaseca-de-la-Higuera, P., Alberola-Lopez, S., Andres-de-Llano, J. M., Villalobos, J. A. L., Garmendia-Leiza, J. R., & Alberola-Lopez, C. (2020). Objective ADHD diagnosis using convolutional neural networks over daily-life activity records. IEEE journal of biomedical and health informatics, 24(9), 2690-2700.
Resumen
Attention Deficit/Hyperactivity Disorder (ADHD) is the most common neurobehavioral disorder in children and adolescents. However, its etiology is still unknown, and this hinders the existence of reliable, fast and inexpensive standard diagnostic methods. Objective: This paper proposes an end-to-end methodology for automatic diagnosis of the combined type of ADHD. Methods: Diagnosis is based on the analysis of 24 hour-long activity records using Convolutional Neural Networks to classify spectrograms of activity windows. Results: We achieve up to 97.62% average sensitivity, 99.52% specificity and AUC values over 99%. Overall, our figures overcome those obtained by actigraphy-based methods reported in the literature as well as others based on more expensive (and not so convenient) acquisition methods. Conclusion: These results reinforce the idea that combining deep learning techniques together with actimetry can lead to a robust and efficient system for objective ADHD diagnosis. Significance: Reliance on simple activity measurements leads to an inexpensive and non-invasive objective diagnostic method, which can be easily implemented with daily devices.
ISSN
2168-2194
Revisión por pares
SI
Idioma
eng
Tipo de versión
info:eu-repo/semantics/draft
Derechos
restrictedAccess
Aparece en las colecciones
Ficheros en el ítem